Skip to main content

Advertisement

Log in

Human impact, soil erosion, and vegetation response lags to climate change: challenges for the mid-Scandinavian pollen-based transfer-function temperature reconstructions

  • Discussion
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

Precise and accurate reconstructions of past environmental parameters from high-quality palaeoenvironmental studies are critical for realistic testing of climate models. To ascertain the reliability of the reconstructions of the past, cross-validation from a variety of proxies and methods is essential. Mid-Scandinavia, showing a variety of palaeoecological studies, is a suitable region for comparing and validating environmental reconstructions. Here, pollen-based transfer-function reconstructions show inconsistent late-glacial temperature patterns. They also show that the Holocene Thermal Maximum (HTM) occurs at ca. 7.5–4.5 cal. ka b.p. However, thermal indicators (pollen, megafossils, plant macrofossils) place the HTM at no later than ca. 10–7.5 cal. ka b.p. It is argued that after the onset of the early Holocene warming equilibrium between vegetation and climate was established over a prolonged period; i.e. ca. 1,500 and 4,000 years in the mountains and lowlands, respectively. In the mountains, soil drought, wind and winter stress were important factors causing the lag, whereas inter-specific competition and soil development delayed the succession within the species-diverse lowland forests. These lags when vegetation was not filling its thermal potential result in a distortion of the temperature signal as derived by transfer functions which assume that vegetation is essentially in equilibrium with climate. Due to widespread human impact and erosion today, many modern training set samples are unsuitable as reference material for past environmental conditions. Various recommendations are suggested towards making improvements in the pollen-transfer function approach to climate reconstructions. To overcome the difficulties resulting from vegetation lags in the early Holocene, proxies that have a faster response time to climate, such as chironomids and aquatic plants including algae, may replace terrestrial pollen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen ST (1975) The Eemian freshwater deposit at Egernsund, South Jylland, and the Eemian landscape development in Denmark. Geological Survey of Denmark Yearbook 1974, pp 49–70

  • Andersen ST, Aaby B, Odgaard BV (1996) Chapter 7: Denmark. In: Berglund B, Birks HJB, Ralska-Jasiewiczowa M, Wright HE (eds) Palaeoecological events during the last 15,000 years. Regional syntheses of palaeoecological studies of lakes and mires in Europe. Wiley, Chichester, pp 215–231

    Google Scholar 

  • Anderson RS, Jiménez-Moreno G, Carrión JS, Pérez-Martínez C (2011) Postglacial history of alpine vegetation, fire, and climate from Laguna de Río Seco, Sierra Nevada, southern Spain. Quat Sci Rev 30:1,615–1,629

    Article  Google Scholar 

  • Antonsson K, Seppä H (2007) Holocene temperatures in Bohuslän, southwest Sweden: a quantitative reconstruction from fossil pollen data. Boreas 36:400–410

    Article  Google Scholar 

  • Antonsson K, Brooks SJ, Seppä H, Telford RJ, Birks HJB (2006) Quantitative palaeotemperature records inferred from fossil pollen and chironomid assemblages from Lake Gilltjärnen, northern central Sweden. J Quat Sci 21:831–841

    Article  Google Scholar 

  • Araújo MB, Rahbek C (2006) How does climate change affect biodiversity? Science 313:1,396–1,397

    Article  Google Scholar 

  • Axford Y, Andresen CS, Andrews JT, Belt ST, Geirsdóttir Á, Massé G et al (2011) Do paleoclimate proxies agree? A test comparing 19 late Holocene climate and sea-ice reconstructions from Icelandic marine and lake sediments. J Quat Sci 26:645–656

    Article  Google Scholar 

  • Bang-Andersen S (2006) Charcoal in hearths: a clue to the reconstruction of the palaeo-environment of Mesolithic dwelling sites. Archaeol Environ 21:5–16

    Google Scholar 

  • Baptist F, Choler P (2008) A simulation of the importance of length of growing season and canopy functional properties on the seasonal gross primary production of temperate alpine meadows. Ann Bot 101:549–559

    Article  Google Scholar 

  • Barnea A, Harborne JB, Pannell C (1993) What part of fleshy fruits contain secondary components toxic to birds and why? Biochem Syst Ecol 21:421–429

    Article  Google Scholar 

  • Barnekow L, Loader NJ, Hicks S, Froyd A, Goslar T (2007) Strong correlation between summer temperature and pollen accumulation rates for Pinus sylvestris, Picea abies and Betula spp. in high-resolution record from northern Sweden. J Quat Sci 22:653–658

    Article  Google Scholar 

  • Battarbee RW, Renberg I (1988) Acid deposition and surface water acidification: the use of lake sediments. In: Mathy P (ed) Air pollution and ecosystems. Reidel, Dordrecht, pp 379–395

    Chapter  Google Scholar 

  • Behre K-E (1988) The role of man in European vegetation history. In: Huntley B, Webb T III (eds) Vegetation history. Kluwer, Dordrecht, pp 633–672

    Chapter  Google Scholar 

  • Berger AL (1978) Long term variations of daily insolation and Quaternary climate change. J Atmosph Sci 35:2,362–2,367

    Article  Google Scholar 

  • Berglund BE (1973) Pollen dispersal and deposition in an area of southeastern Sweden—some preliminary results. In: Birks HJB, West RG (eds) Quaternary plant ecology. Blackwell, Oxford, pp 117–129

    Google Scholar 

  • Berglund B, Digerfeldt G, Engelmark R, Gaillard M-J, Karlsson S, Miller U, Risberg J (1996) Chapter 8: Sweden. In: Berglund B, Birks HJB, Ralska-Jasiewiczowa M, Wright HE (eds) Palaeoecological events during the last 15,000 years. Regional syntheses of palaeoecological studies of lakes and mires in Europe. Wiley, Chichester, pp 233–280

    Google Scholar 

  • Binney H, Willis KJ, Edwards ME et al (2009) The distribution of Late-Quaternary woody taxa in northern Eurasia: evidence from a new macrofossil database. Quat Sci Rev 28:2,445–2,464

    Article  Google Scholar 

  • Birks HJB (1986) Late-Quaternary biotic changes in terrestrial and lacustrine environments, with particular reference to north-west Europe. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 3–65

    Google Scholar 

  • Birks HJB (1989) Holocene isochrone maps and patterns of tree-spreading in the British Isles. J Biogeogr 16:503–540

    Article  Google Scholar 

  • Birks HJB (1994) The importance of pollen and diatom taxonomic precision in quantitative palaeoenvironmental reconstructions. Rev Palaeobot Palynol 83:107–117

    Article  Google Scholar 

  • Birks HJB (1998) Numerical tools in palaeolimnology—progress, potentials, and problems. J Paleolimnol 20:307–332

    Article  Google Scholar 

  • Birks HJB (2003) Quantitative palaeoenvironmental reconstructions from Holocene biological data. In: Mackay A, Battarbee RW, Birks HJB, Oldfield F (eds) Global change in the Holocene. Arnold, London, pp 342–357

    Google Scholar 

  • Birks HH, Birks HJB (2000) Future uses of pollen analysis must include plant macrofossils. J Biogeogr 27:31–35

    Article  Google Scholar 

  • Birks HH, Bjune A (2010) Can we detect a west Norwegian tree line from modern samples of plant remains and pollen? Results from the DOORMAT project. Veget Hist Archaeobot 19:325–340

    Article  Google Scholar 

  • Birks HJB, Line JM, Juggins S, Stevenson AC, ter Braak CJF (1990a) Diatoms and pH reconstruction. Phil Trans R Soc B 327:263–278

    Article  Google Scholar 

  • Birks HJB, Berge F, Boyle JF, Cumming BF (1990b) A palaeoecological test of the land-use hypothesis for recent lake acidification in south-west Norway using hill-top lakes. J Paleolimnol 4:69–85

    Article  Google Scholar 

  • Birks HH, Batterbee RW, Birks HJB (2000) The development of the aquatic ecosystem at Kråkenes Lake, western Norway, during the late-glacial and early-Holocene—a synthesis. J Paleolimnol 23:91–114

    Article  Google Scholar 

  • Birks HJB, Heiri O, Seppä H, Bjune AE (2010) Strengths and weaknesses of quantitative climate reconstructions based on late-quaternary biological proxies. Open Ecol J 3:68–110

    Article  Google Scholar 

  • Björk RG, Molau U (2007) Ecology of alpine snowbeds and the impact of global change. Arctic Antarct Alp Res 39:34–43

    Article  Google Scholar 

  • Bjune AE, Bakke J, Nesje A, Birks HJB (2005) Holocene mean July temperature and winter precipitation in western Norway inferred from palynological and glaciological lake-sediment proxies. Holocene 15:177–189

    Article  Google Scholar 

  • Bjune AE, Birks HJB, Peglar SM, Odland A (2010) Developing a modern pollen–climate calibration data set for Norway. Boreas 39:674–688

    Article  Google Scholar 

  • Bøe AG, Murray A, Dahl SO (2007) Resetting of sediments mobilised by the LGM ice-sheet in southern Norway. Quat Geochronol 2:222–228

    Article  Google Scholar 

  • Botkin DB, Saxe H, Araujo MB, Betts R et al (2007) Forecasting the effects of global warming on biodiversity. Bioscience 57:227–236

    Article  Google Scholar 

  • Brooks SJ, Birks HJB (2000) Chironomid-inferred late-glacial and early-Holocene mean July air temperatures for Kråkenes Lake, western Norway. J Paleolimnol 23:77–89

    Article  Google Scholar 

  • Broström A, Nielsen AB, Gaillard M-J, Hjelle K, Mazier F, Binney H et al (2008) Pollen productive estimates of key European plant taxa for quantitative reconstruction of vegetation: a review. Veget Hist Archaeobot 17:461–478

    Article  Google Scholar 

  • Bryson RA, Kutzbach JE (1974) On the analysis of pollen-climate canonical transfer functions. Quat Res 4:162–174

    Article  Google Scholar 

  • Chen X, Zhu C, Ma C, Fan C (2008) Sensitivity of pollen factors in the climate transfer function. Chin Sci Bull 53:50–57

    Article  Google Scholar 

  • Clark RM, Thompson R (2010) Predicting the impact of global warming on the timing of spring flowering. Int J Climatol 30:1,599–1613

    Article  Google Scholar 

  • Dahl E (1998) The phytogeography of Northern Europe (British Isles, Fennoscandia and adjacent areas). Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Dahl SO, Nesje A (1996) A new approach to calculating Holocene winter precipitation by combining glacier equilibrium-line altitudes and pine-tree limits: a case study from Hardangerjøkulen, central southern Norway. Holocene 6:381–398

    Article  Google Scholar 

  • Dahl SO, Nesje A, Øvstedal J (1997) Cirque glaciers as morphological evidence for a thin Younger Dryas ice sheet in the east-central southern Norway. Boreas 26:161–180

    Article  Google Scholar 

  • Danielsen A (1970) Pollen-analytical late quaternary studies in the Ra district of Østfold, southeast Norway. Acta Univ Bergensis Ser Math Rer Nat 1969:14

    Google Scholar 

  • Darby HC (1956) The clearing of woodland in Europe. In: Thomas WL Jr (ed) Man’s role in changing the face of the earth, vol I. University of Chicago, Chicago, pp 183–216

    Google Scholar 

  • Dearing JA (1991) Erosion and land use. In: Berglund BE (ed) The cultural landscape during 6000 years in southern Sweden. Ecological Bulletins, vol 41. Munksgaard International Booksellers, Copenhagen, pp 283–292

  • Dieffenbacher-Krall AC, Jacobson GL Jr (2001) Post-glacial changes in the geographic ranges of certain aquatic vascular plants in North America. Biol Environ Proc Royal Irish Acad 101B:79–84

    Google Scholar 

  • DNMI (2011) Det Norske Meteorologiske Institutt web pages: http://eklima.met.no/metno/trend/TAMA_G1_22_1000_NO.jpg. Accessed 25 Apr 2012

  • Dreibrodt S, Lubos C, Terhorst B, Damm B, Bork HR (2010) Historical soil erosion by water in Germany: scales and archives, chronology, research perspectives. Quat Int 222:80–95

    Article  Google Scholar 

  • Edwards KJ, Rowntree KM (1980) Radiocarbon and palaeoenvironmental evidence for changing rates of erosion at a Flandrian stage site in Scotland. In: Cullingford RA, Davidson DA, Lewin J (eds) Timescales in geomorphology. Wiley, Chichester, pp 207–223

    Google Scholar 

  • Eide F (1981) Key for Northwest European Rosaceae pollen. Grana 20:101–118

    Article  Google Scholar 

  • Ek AS, Löfgren S, Bergholm J, Qvarfort U (2001) Environmental effects of one thousand years of copper production at Falun, Central Sweden. Ambio 30:96–103

    Google Scholar 

  • Elsig J, Schmitt J, Leuenberger D, Schneider R, Eyer M et al (2009) Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core. Nature 461:507–510

    Article  Google Scholar 

  • Fréchette B, de Vernal A, Guiot J et al (2008) Methodological basis for quantitative reconstruction of air temperature and sunshine from pollen assemblages in Arctic Canada and Greenland. Quat Sci Rev 27:1,197–1,216

    Article  Google Scholar 

  • Gaillard M-J, Sugita S, Mazier F et al (2010) Holocene land-cover reconstructions for studies on land cover-climate feedbacks. Clim Past 6:483–499

    Article  Google Scholar 

  • Giesecke T, Fontana SL (2008) Revisiting pollen accumulation rates from Swedish lake sediments. Holocene 18:293–305

    Article  Google Scholar 

  • Giesecke T, Fontana SL, van der Knaap WO, Pardoe HS, Pidek IA (2010) From early pollen trapping experiments to the pollen monitoring programme. Veget Hist Archaeobot 19:247–258

    Article  Google Scholar 

  • Giesecke T, Bennett KD, Birks HJB et al (2011) The pace of Holocene vegetation change—testing for synchronous developments. Quat Sci Rev 30:2,805–2,814

    Article  Google Scholar 

  • Goehring BM, Brook EJ, Linge H, Raisbeck GM, Yiou F (2008) Beryllium-10 exposure ages of erratic boulders in southern Norway and implications for the history of the Fennoscandian Ice Sheet. Quat Sci Rev 27:320–336

    Article  Google Scholar 

  • Goring S, Lacourse T, Pellatt MG, Walker IR, Mathewes RW (2010) Are pollen-based climate models improved by combining surface samples from soil and lacustrine substrates? Rev Palaeobot Palynol 162:203–212

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Google Scholar 

  • Gunnarsdottir H, Høeg HI (2001) Holocene vegetation history of the mountain area of Lesja and Dovre, south central Norway, in the light of climate change and human impact. AmS-Skrifter 16:11–46

    Google Scholar 

  • Hafsten U (1956) Pollen-analytic investigations on the late quaternary development in the inner Oslofjord area. Acta Univ Bergensis Ser Math Rer Nat 1956:8

    Google Scholar 

  • Hafsten U (1983) Shore-level changes in South Norway during the last 13,000 years, traced by biostratigraphical methods and radiometric datings. Norsk Geogr Tidsskr 37:63–79

    Article  Google Scholar 

  • Hald M, Andersson C, Ebbesen H et al (2007) Variations in temperature and extent of Atlantic Water in the northern North Atlantic during the Holocene. Quat Sci Rev 26:3,423–3,440

    Article  Google Scholar 

  • Hammarlund D, Velle G, Wolfe BB et al (2004) Palaeolimnological and sedimentary responses to Holocene forest retreat in the Scandes Mountains, west-central Sweden. Holocene 14:862–876

    Article  Google Scholar 

  • Hammarlund D, Björck S, Buchardt B, Thomsen CT (2005) Limnic responses to increased effective humidity during the 8200 cal. yr BP cooling event in southern Sweden. J Paleolimnol 34:471–480

    Article  Google Scholar 

  • Heiri O, Lotter A (2010) How does taxonomic resolution affect chironomid-based temperature reconstruction? J Paleolimnol 44:589–601

    Article  Google Scholar 

  • Helland A (1912) Trægrændser og Sommervarmen. Tidsskr Skogbruk 20:1–32

    Google Scholar 

  • Hicks S (2001) The use of annual arboreal pollen deposition values for delimiting tree-lines in the landscape and exploring models of pollen dispersal. Rev Palaeobot Palynol 117:1–29

    Article  Google Scholar 

  • Hirons KR (1987) Recruitment of cpr2 pollen to lake sediments: an example from Tyrone, Northern Ireland. Rev Palaeobot Palynol 54:43–54

    Article  Google Scholar 

  • Hjelle KL, Sugita S (2012) Estimating pollen productivity and relevant source area of pollen using lake sediments in Norway: how does lake size variation affect the estimates? Holocene 22:313–324

    Article  Google Scholar 

  • Hjelle KL, Hufthammer AK, Bergsvik KA (2006) Hesitant hunters: a review of the introduction of agriculture in western Norway. Environ Archaeol 11:147–170

    Article  Google Scholar 

  • Hjelle KL, Halvorsen LS, Overland A (2010) Heathland development and relationship between humans and environment along the coast of western Norway through time. Quat Int 220:133–146

    Article  Google Scholar 

  • Hoek WZ (2001) Vegetation response to the 14.7 and 11.5 ka cal. BP climate transitions: is vegetation lagging climate? Glob Planet Change 30:103–115

    Article  Google Scholar 

  • Høgestøl M, Prøsch-Danielsen L (2006) Impulses of agro pastoralism in the 4th and 3rd millenia BC on the south-western coastal rim of Norway. Environ Archaeol 11:19–34

    Article  Google Scholar 

  • Holtmeier F-K, Broll G (2010) Wind as an ecological agent at treelines in North America, the Alps, and the European Subarctic. Phys Geogr 31:203–233

    Article  Google Scholar 

  • Huang CC, O’Connell M (2000) Recent land-use and soil-erosion history within a small catchment in Connemara, western Ireland: evidence from lake sediment and documentary sources. Catena 41:293–335

    Article  Google Scholar 

  • Huang CC, Pang J, Zha X, Zhou Y, Su H, Li Y (2010) Extraordinary floods of 4100−4000 a BP recorded at the Late Neolithic ruins in the Jinghe River gorges, Middle Reach of the Yellow River, China. Palaeogeogr Palaeoclim Palaeoecol 189:1–9

    Article  Google Scholar 

  • Huntley B (2012) Reconstructing palaeoclimates from biological proxies: some often overlooked sources of uncertainty. Quat Sci Rev 31:1–16

    Article  Google Scholar 

  • Huntley B, Prentice C (1988) July temperatures in Europe from pollen data, 6000 years before present. Science 241:687–690

    Article  Google Scholar 

  • Idžojtić M, Kogelnik M, Franjić J, Škvorc Ž (2006) Hosts and distribution of Viscum L. ssp. album in Croatia and Slovenia. Plant Biosyst 140:50–55

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Iversen J (1944) Viscum, Hedera and Ilex as climate indicators. Geol För Stockh Förh 66:463–483

    Article  Google Scholar 

  • Iversen J (1954) The Late-Glacial flora of Denmark and its relation to climate and soil. Danm Geol Unders II 80:87–119

    Google Scholar 

  • Iversen J (1958) The bearing of glacial and interglacial epochs on the formation and extinction of plant taxa. Uppsala Univ Årsskr 6:210–215

    Google Scholar 

  • Iversen J (1960) Problems of the early post-glacial forest development in Denmark. Danm Geol Unders IV 4:1–32

    Google Scholar 

  • Iversen J (1969) Retrogressive development of a forest ecosystem demonstrated by pollen diagrams from fossil mor. Oikos Suppl 12:35–49

    Google Scholar 

  • Johnsen SJ, Dahl-Jensen D, Gundestrup N et al (2001) Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. J Quat Sci 16:299–307

    Article  Google Scholar 

  • Kaland PE (1986) The origin and management of Norwegian coastal heaths as reflected by pollen analysis. In: Behre K-E (ed) Anthropogenic indicators in pollen diagrams. Balkema, Rotterdam, pp 19–36

    Google Scholar 

  • Kaplan JO, Krumhardt KM, Zimmermann N (2009) The prehistoric and preindustrial deforestation of Europe. Quat Sci Rev 28:3,016–3,034

    Article  Google Scholar 

  • Koç-Karpuz N, Jansen E (1992) A high-resolution diatom record of the last deglaciation from the SE Norwegian Sea: a documentation of rapid climatic changes. Paleoceanography 7:499–520

    Article  Google Scholar 

  • Koinig KA, Shotyk W, Lotter AF, Ohlendorf C, Sturm M (2003) 9000 years of geochemical evolution of lithogenic major and trace elements in the sediment of an alpine lake—the role of climate, vegetation, and land-use history. J Paleolimnol 30:307–320

    Article  Google Scholar 

  • Krüger LC, Paus A, Svendsen JI, Bjune AE (2011) Lateglacial vegetation and palaeoenvironment in W Norway, with new pollen data from the Sunnmøre region. Boreas 40:616–635

    Article  Google Scholar 

  • Kühl N, Moschen R, Wagner S, Brewer S, Peyron O (2010) A multiproxy record of late Holocene natural and anthropogenic environmental change from the Sphagnum peat bog Dürres Maar, Germany: implications for quantitative climate reconstructions based on pollen. J Quat Sci 25:675–688

    Article  Google Scholar 

  • Kullman L (1995) Holocene tree-limit and climate history from the Scandes Mountains, Sweden. Geol 7:2,490–2,502

    Google Scholar 

  • Kullman L (1998a) Non-analogous tree flora in the Scandes Mountains, Sweden, during the early Holocene—macrofossil evidence of rapid geographic spread and response to palaeoclimate. Boreas 27:151–161

    Google Scholar 

  • Kullman L (1998b) The occurrence of thermophilous trees in the Scandes Mountains during the early Holocene: evidence for a diverse tree flora from macroscopic remains. J Ecol 86:421–428

    Article  Google Scholar 

  • Kullman L (2002) Boreal tree taxa in the central Scandes during the late-glacial: implications for late quaternary forest history. J Biogeogr 29:1,117–1,124

    Article  Google Scholar 

  • Kullman L (2004) Tree-limit landscape evolution at the southern fringe of the Swedish Scandes (Dalarna province)—Holocene and 20th century perspectives. Fennia 182:73–94

    Google Scholar 

  • Kullman L (2005) Wind-conditioned 20th century decline of birch treeline vegetation in the Swedish Scandes. Arctic 5:286–294

    Google Scholar 

  • Kullman L (2008) Early postglacial appearance of tree species in northern Scandinavia: review and perspective. Quat Sci Rev 27:2,467–2,472

    Article  Google Scholar 

  • Kullman L, Kjällgren L (2006) Holocene pine tree-line evolution in the Swedish Scandes: recent tree-line rise and climate change in a long-term perspective. Boreas 35:159–168

    Article  Google Scholar 

  • Kultti S, Mikkola K, Virtanen T, Timonen M, Eronen M (2006) Past changes in the Scots pine forest line and climate in Finnish Lapland: a study based on megafossils, lake sediments, and GIS-based vegetation and climate data. Holocene 16:381–391

    Article  Google Scholar 

  • Kvamme M (1984) Vegetasjonshistoriske undersøkelser. In: Meyer OB (ed) Breheimen-Stryn. Konsesjonsavgjørende botaniske undersøkelser. Botanisk Institutt, Universitetet i Bergen, Rapport 34, pp 238–288

  • Kvamme M (1988) Pollen analytical studies of mountain summer-farming in western Norway. In: Birks HH, Birks HJB, Kaland PE, Moe D (eds) The cultural landscape—past, present and future. Cambridge University Press, Cambridge, pp 429–443

    Google Scholar 

  • Lagerås P (2000) Burial rituals inferred from palynological evidence: results from a late Neolithic stone cist in southern Sweden. Veget Hist Archaeobot 9:169–173

    Article  Google Scholar 

  • Lang A, Hönscheidt S (1999) Age and source of colluvial sediments at Vaihingen–Enz, Germany. Catena 38:89–107

    Article  Google Scholar 

  • Lang B, Brooks SJ, Bedford A, Jones RT, Birks HJB, Marshall JD (2010) Regional consistency in lateglacial chironomid-inferred temperatures from five sites in north-west England. Quat Sci Rev 29:1,528–1,538

    Article  Google Scholar 

  • Latocha A (2009) Land-use changes and longer-term human–environment interactions in a mountain region (Sudetes Mountains, Poland). Geomorphology 108:48–57

    Article  Google Scholar 

  • Li Y, Xu Q, Liu J, Yang X, Nakagawa T (2007) A transfer-function model developed from an extensive surface-pollen data set in northern China and its potential for palaeoclimate reconstructions. Holocene 17:897–905

    Article  Google Scholar 

  • Lindbladh M, Foster DR (2010) Dynamics of long-lived foundation species: the history of Quercus in southern Scandinavia. J Ecol 98:1,330–1,345

    Article  Google Scholar 

  • Lisitsyna OV, Hicks S, Huusko A (2012) Do moss samples, pollen traps and modern lake sediments all collect pollen in the same way? A comparison from the forest limit area of northernmost Europe. Veget Hist Archaeobot 21:187–199

    Article  Google Scholar 

  • Litt T, Junge FW, Böttger T (1996) Climate during the Eemian in north-central Europe—a critical review of the palaeobotanical and stable isotope data from central Germany. Veget Hist Archaeobot 5:247–256

    Article  Google Scholar 

  • Litt T, Schölzel C, Kühl N, Brauer A (2009) Vegetation and climate history in the Westeifel Volcanic Field (Germany) during the last 11,000 years based on annually laminated lacustrine maar sediments. Boreas 38:390–679

    Article  Google Scholar 

  • Lotter A, Heiri O, Brooks S, van Leeuwen JFN, Eicher U, Ammann B (2012) Rapid summer temperature changes during Termination 1a: high-resolution multi-proxy climate reconstructions from Gerzensee (Switzerland). Quat Sci Rev 36:103–113

    Article  Google Scholar 

  • Loulergue L, Schilt A, Spahni R, Masson-Delmotte V, Blunier T, Lemieux B et al (2008) Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453:383–386

    Article  Google Scholar 

  • Lowe JJ, Rasmussen SO, Björck S, Hoek WZ, Steffensen JP, Walker MJC, Yu ZC (2008) Synchronisation of palaeoenvironmental events in the North Atlantic region during the Last Termination: a revised protocol recommended by the INTIMATE group. Quat Sci Rev 27:6–17

    Article  Google Scholar 

  • Mann DH, Groves P, Reanier RE, Kunz ML (2010) Floodplains, permafrost, cottonwood trees, and peat: what happened the last time climate warmed suddenly in arctic Alaska? Quat Sci Rev 29:3,812–3,830

    Article  Google Scholar 

  • Matthews JA, Dresser PQ (2008) Holocene glacier variation chronology of the Smørstabbtindan massif, Jotunheimen, southern Norway, and the recognition of century- to millennial-scale European Neoglacial Events. Holocene 18:181–201

    Article  Google Scholar 

  • Matthews JA, Karlén W (1992) Asynchronous neoglaciation and Holocene climatic change reconstructed from Norwegian glaciolacustrine sedimentary sequences. Geology 20:991–994

    Article  Google Scholar 

  • Mátyás C, Berkl I, Czúcz B, Gálos B, Móricz N, Raztovits E (2010) Future of beech in southeast Europe from the perspective of evolutionary ecology. Acta Silv Lign Hung 6:91–110

    Google Scholar 

  • Moe D, Fedele FG, Maude AE, Kvamme M (2007) Vegetational changes and human presence in the low-alpine and subalpine zone in Val Febbraro, upper Valle di Spluga (Italian central Alps), from the Neolithic to the Roman period. Veget Hist Archaeobot 16:431–451

    Article  Google Scholar 

  • Mortensen MF, Birks HH, Christensen C, Holm J, Noe-Nygaard N, Odgaard BV, Olsen J, Rasmussen KL (2011) Lateglacial vegetation development in Denmark—new evidence based on macrofossils and pollen from Slotseng, a small-scale site in southern Jutland. Quat Sci Rev 30:2,534–2,550

    Article  Google Scholar 

  • Myhre B (2004) Agriculture, landscape and society ca. 4000 BC–AD 800. In: Almås R (ed) Norwegian agricultural history. Tapir Academic Press, Trondheim, pp 14–77

    Google Scholar 

  • Nesje A (2009) Latest Pleistocene and Holocene alpine glacier fluctuations in Scandinavia. Quat Sci Rev 28:2,119–2,136

    Article  Google Scholar 

  • Nesje A, Dahl SO (2001) The Greenland 8200 cal. yr BP event detected in loss-on-ignition profiles in Norwegian lacustrine sediment sequences. J Quat Sci 16:155–166

    Article  Google Scholar 

  • Nesje A, Matthews JA, Dahl SO, Berrisford MS, Andersson C (2001) Holocene glacier fluctuations of Flatebreen and winter-precipitation changes in the Jostedalsbreen region, western Norway, based on glaciolacustrine sediment records. Holocene 11:267–280

    Article  Google Scholar 

  • Nesje A, Jansen E, Birks HJB et al (2005) Holocene climate variability in the northern Atlantic region: a review of terrestrial and marine evidence. The Nordic Seas: an integrated perspective. Geophys Monogr Ser 158:289–322

    Article  Google Scholar 

  • Nesje A, Bjune AE, Bakke J, Dahl SO, Lie Ø, Birks HJB (2006) Holocene palaeoclimate reconstructions at Vanndalsvatnet, western Norway, with particular reference to the 8200 cal. yr BP event. Holocene 16:717–729

    Article  Google Scholar 

  • O’Connor KI, Metcalfe NB, Taylor AC (2000) The effects of prior residence on behavior and growth rates in juvenile Atlantic salmon (Salmo salar). Behavioral Ecol 11:13–18

    Article  Google Scholar 

  • Odgaard BV (1994) The Holocene vegetation history of northern West Jutland, Denmark. Opera Bot 123:1–171

    Google Scholar 

  • Odland A (1996) Differences in the vertical distribution pattern of Betula pubescens in Norway and its ecological significance. Paläoklimaforschung 20:43–59

    Google Scholar 

  • Ohlwein C, Wahl ER (2012) Review of probabilistic pollen-climate transfer methods. Quat Sci Rev 31:17–29

    Article  Google Scholar 

  • Ortu E, Brewer S, Peyron O (2006) Pollen-inferred palaeoclimate reconstructions in mountain areas: problems and perspectives. J Quat Sci 21:615–627

    Article  Google Scholar 

  • Ortu E, David F, Peyron O (2010) Pollen-inferred palaeoclimate reconstruction in the Alps during the Lateglacial and the early Holocene: how to estimate the effect of elevation and local parameters. J Quat Sci 25:651–661

    Article  Google Scholar 

  • Overland A, Hjelle KL (2009) From forest to open pastures and fields: cultural landscape development in western Norway inferred from two pollen records representing different spatial scales of vegetation. Veget Hist Archaeobot 18:459–476

    Article  Google Scholar 

  • Overland A, O’Connell M (2011) New insights into late Holocene farming and woodland dynamics in western Ireland with particular reference to the early medieval horizontal watermill at Kilbegly, Co. Roscommon. Rev Palaeobot Palynol 163:205–226

    Article  Google Scholar 

  • Overpeck JT, Webb T, Prentice IC (1985) Quantitative interpretation of fossil pollen spectra—dissimilarity coefficients and the method of modern analogs. Quat Res 23:87–108

    Article  Google Scholar 

  • Owen JJ, Amundson R, Dietrich WE, Nishiizumi K, Brad Sutter B, Chong G (2011) The sensitivity of hillslope bedrock erosion to precipitation. Earth Surf Process Landforms 36:117–135

    Article  Google Scholar 

  • Paus A (1982) Vegetasjonshistoriske undersøkelser i Sandvikvatn, Kårstø, Tysvær i Rogaland. Botanisk Institutt, Universitetet i Bergen, Rapport 23, Part II

  • Paus A (1995) The Late Weichselian and early Holocene tree-birch history in S.Norway and the Bølling Betula time-lag in NW Europe. Rev Palaeobot Palynol 85:243–262

    Article  Google Scholar 

  • Paus A (2010) Vegetation and environment of the Rødalen alpine area, Central Norway, with emphasis on the early Holocene. Veget Hist Archaeobot 19:29–51

    Article  Google Scholar 

  • Paus A, Gustafson L, Jevne OE (1987) Kulturhistoriske undersøkelser i Innerdalen, Kvikne, Hedmark. In: Rapport Arkeol. Ser 1987-1. Universitet i Trondheim, Vitenskapsmuseet

  • Paus A, Velle G, Larsen L, Nesje A, Lie Ø (2006) Late-glacial nunataks in central Scandinavia: biostratigraphical evidence for ice thickness from Lake Flåfattjønn, Tynset, Norway. Quat Sci Rev 25:1,228–1,246

    Article  Google Scholar 

  • Paus A, Velle G, Berge J (2011) The late-glacial and early Holocene vegetation and environment in the Dovre mountains, central Norway, as signalled in two late-glacial nunatak lakes. Quat Sci Rev 30:1,780–1,796

    Article  Google Scholar 

  • Peck RM (1973) Pollen budget studies in a small Yorkshire catchment. In: Birks HJB, West RG (eds) Quaternary plant ecology. Blackwell, Oxford, pp 43–60

    Google Scholar 

  • Pennington W (1986) Lags in adjustment of vegetation to climate caused by the pace of soil development: evidence from Britain. Vegetatio 67:105–118

    Article  Google Scholar 

  • Peyron O, Guiot J, Cheddadi R, Tarasov P, Reille M, de Beaulieu J-L, Bottema S, Andrieu V (1998) Climatic reconstruction of Europe for 18,000 yr BP from pollen data. Quat Res 49:183–196

    Article  Google Scholar 

  • Pongratz J (2009) A model estimate on the effect of anthropogenic land cover change on the climate of the last millennium. PhD thesis, Max Planck Institute for Meteorology, Hamburg. Reports on Earth System Science 68

  • Prentice IC (1986) Vegetation responses to past climatic variation. Vegetatio 67:131–141

    Article  Google Scholar 

  • Prøsch-Danielsen L, Simonsen A (2000) The deforestation patterns and the establishment of the coastal heathland of southwestern Norway. AmS-Skrifter 15, Archaeological Museum, Stavanger, Norway

  • Prøsch-Danielsen L, Sørensen R (2010) 333 years of copper mining in the Røros region of the Mid-Scandic highlands. Written sources versus natural archives. J Nordic Archaeol Sci 17:37–51

    Google Scholar 

  • Punt W, Blackmore S, Clarke GCS, Hoen PP (1976–2009) The Northwest European Pollen Flora I-IX. Elsevier, Amsterdam

  • Rasmussen SO, Vinther BM, Clausen HB, Andersen KK (2007) Early Holocene climate oscillations recorded in three Greenland cores. Quat Sci Rev 26:1,907–1,914

    Article  Google Scholar 

  • Rehfeldt GE, Ying CC, Spittlehouse DL, Hamilton DA Jr (1999) Genetic responses to climate in Pinus contorta: niche breadth, climate change, and reforestation. Ecol Monogr 69:375–407

    Google Scholar 

  • Rehfeldt GE, Tchebakova NM, Parfenova YI, Wykoff WR, Kuzmina NA, Milyutin LI (2002) Intraspecific responses to climate in Pinus sylvestris. Glob Change Biol 8:912–929

    Article  Google Scholar 

  • Renssen H, Goosse H, Fichefet T (2007) Simulation of Holocene cooling events in a coupled climate model. Quat Sci Rev 26:2,019–2,029

    Article  Google Scholar 

  • Renssen H, Seppä H, Heiri O, Roche DM, Goosse H, Fichefet T (2009) The spatial and temporal complexity of the Holocene thermal maximum. Nat Geosci 2:411–414

    Article  Google Scholar 

  • Ritchie JC (1986) Climate change and vegetation response. Vegetatio 67:65–74

    Article  Google Scholar 

  • Ruddiman WF (2010) Plows, plagues, and petroleum. How humans took control of climate, 2nd edn. Princeton University Press, Princeton

    Google Scholar 

  • Sæthersdal M, Birks HJB, Peglar S (1998) Predicting changes in Fennoscandian vascular-plant species richness as a result of future climatic change. J Biogeogr 25:111–122

    Article  Google Scholar 

  • Schofield JE, Edwards KJ, Mighall TM, Martínez Cortizas A, Rodríguez-Racedo J, Cook G (2010) An integrated geochemical and palynological study of human impacts, soil erosion and storminess from southern Greenland since c. AD 1000. Palaeogeogr Palaeoclim Palaeoecol 295:19–30

    Article  Google Scholar 

  • Seppä H, Birks HJB, Odland A, Poska A, Veski S (2004) A modern pollen-climate calibration set from northern Europe: developing and testing a tool for palaeoclimatological reconstructions. J Biogeogr 31:251–267

    Article  Google Scholar 

  • Seppä H, Bjune AE, Telford RJ, Birks HJB, Veski S (2009) Last nine-thousand years of temperature variability in Northern Europe. Clim Past 5:523–535

    Article  Google Scholar 

  • Shakesby RA, Smith JG, Matthews JA et al (2007) Reconstruction of Holocene glacier history from distal sources: glaciofluvial stream-bank mires and a glaciolacustrine sediment core near Sota Sæter, Breheimen, southern Norway. Holocene 17:729–745

    Article  Google Scholar 

  • Simpson GL (2007) Analogue methods in palaeoecology: using the analogue package. J Stat Softw 22:1–29

    Google Scholar 

  • Smith IR (1975) Turbulence in lakes and rivers. Freshwater Biological Association, Scientific Publication no. 29, pp 1–29

  • Starr G, Oberbauer SF, Pop EW (2000) Effects of lengthened growing season and soil warming on the phenology and physiology of Polygonum bistorta. Glob Change Biol 6:357–369

    Article  Google Scholar 

  • Stevenson AC, Jones VJ, Battarbee RW (1990) The cause of peat erosion: a palaeo-limnological approach. New Phytol 114:727–735

    Article  Google Scholar 

  • Stewart JR, Cooper A (2008) Ice Age refugia and quaternary extinctions: an issue of quaternary evolutionary palaeoecology. Quat Sci Rev 27:2,443–2,448

    Article  Google Scholar 

  • Sugita S (1994) Pollen representation of vegetation in quaternary sediments: theory and method in patchy vegetation. J Ecol 82:881–897

    Article  Google Scholar 

  • Sugita S (2007a) Theory of quantitative reconstruction of vegetation. I: pollen from large sites REVEALS regional vegetation. Holocene 17:229–241

    Article  Google Scholar 

  • Sugita S (2007b) Theory of quantitative reconstruction of vegetation. II: All you need is LOVE. Holocene 17:243–257

    Article  Google Scholar 

  • Svenning J-C, Skov F (2004) Limited filling of the potential range in European tree species. Ecol Lett 7:565–573

    Article  Google Scholar 

  • Telford RJ, Birks HJB (2009) Evaluation of transfer functions in spatially structured environments. Quat Sci Rev 28:1,309–1,316

    Article  Google Scholar 

  • Telford RJ, Birks HJB (2011) A novel method for assessing the statistical significance of quantitative reconstructions inferred from biotic assemblages. Quat Sci Rev 30:1,272–1,278

    Article  Google Scholar 

  • Thomas CD, Cameron A, Green RE et al (2004) Extinction risk from climate change. Nature 427:145–148

    Article  Google Scholar 

  • Thompson R (1980) Use of the word influx in paleolimnological studies. Quat Res 14:269–270

    Article  Google Scholar 

  • Turner C (2000) The Eemian interglacial in the North European plain and adjacent areas. Geol Mijnbouw 79:217–231

    Google Scholar 

  • Van der Knaap WO, van Leeuwen JFN, Goslar T, Krisai R, Tinner W (2012) Human impact on vegetation at the Alpine tree-line ecotone during the last millennium: lessons from high temporal and palynological resolution. Veget Hist Archaeobot 21:37–60

    Article  Google Scholar 

  • Velle G, Brooks SJ, Birks HJB, Willassen E (2005a) Chironomids as a tool for inferring Holocene climate: an assessment based on six sites in southern Scandinavia. Quat Sci Rev 24:1,429–1,462

    Article  Google Scholar 

  • Velle G, Larsen J, Eide W, Peglar SM, Birks HJB (2005b) Holocene environmental history and climate of Råtåsjøen, a low-alpine lake in south-central Norway. J Paleolimnol 33:129–153

    Article  Google Scholar 

  • Velle G, Bjune A, Larsen J, Birks HJB (2010a) Holocene climate and environmental history of Brurskardstjørni, a lake in the catchment of Øvre Heimdalsvatn, south-central Norway. Hydrobiologia 642:13–34

    Article  Google Scholar 

  • Velle G, Brodersen KP, Birks HJB, Willassen E (2010b) Midges as quantitative temperature indicator species: lessons for palaeoecology. Holocene 20:989–1,002

    Article  Google Scholar 

  • Velle G, Kongshavn K, Birks HJB (2011) Minimizing the edge-effect in environmental reconstructions by trimming the calibration set: Chironomid-inferred temperatures from Spitsbergen. Holocene 21:417–430

    Article  Google Scholar 

  • Verstraeten G, Lang A, Houben P (2009) Human impact on sediment dynamics—quantification and timing. Catena 77:77–80

    Article  Google Scholar 

  • Vinther BM, Buchardt SL, Clausen HB et al (2009) Holocene thinning of the Greenland ice sheet. Science 17:385–389

    Google Scholar 

  • Vorren K-D, Alm T, Mørkved B (1996) Holocene pine (Pinus sylvestris L.) and grey alder (Alnus incana L.) immigration and areal oscillations in central Troms, northern Norway, and their implications. Paläoklimaforschung 20:271–291

    Google Scholar 

  • Vuorela I (1980) Old organic material as a source of dating errors in sediments from Vanajavesi and its manifestation in the pollen stratigraphy. Ann Bot Fenn 17:244–257

    Google Scholar 

  • Wang JY (1960) A critique of the heat unit approach to plant response studies. Ecology 41:785–790

    Article  Google Scholar 

  • Webb T, Bryson RA (1972) Late- and postglacial climatic change in the northern Midwest, USA: quantitative estimates derived from fossil pollen spectra by multivariate statistical analysis. Quat Res 2:70–115

    Article  Google Scholar 

  • Welinder S, Pedersen EA, Widgren EA (1998) Det svenska jordbrukets historia. Jordbrukets första femtusen år. 4000 f.Kr.–1000 e.Kr. Natur och Kultur/Lts förlag, Borås

  • Williams JW, Jackson ST (2007) Novel climates, no-analog communities, and ecological surprises. Front Ecol Environ 5:475–482

    Article  Google Scholar 

  • Xu Q, Li Y, Bunting MJ, Tian F, Liu J (2010) The effects of training set selection on the relationship between pollen assemblages and climate parameters: implications for reconstructing past climate. Palaeogeogr Palaeoclim Palaeoecol 289:123–133

    Article  Google Scholar 

  • Zuber D, Widmer A (2009) Phylogeography and host race differentiation in the European mistletoe (Viscum album L.). Mol Ecol 18:1,946–1,962

    Article  Google Scholar 

Download references

Acknowledgments

I thank Kari Hjelle, Peter Emil Kaland, Atle Nesje, and Gaute Velle for fruitful discussions and valuable comments. Beate Helle is thanked for preparing the illustrations. I also want to thank Linn Cecilie Krüger, Leif Kullman, Mons Kvamme, Csaba Mátyás, Bent Vad Odgaard, Arvid Odland, and Gerry Rehfeldt for comments. Andy Lotter and two anonymous reviewers are thanked for critical and highly valuable comments. Furthermore, I thank Boreas and Blackwell Publishing for permitting the use of Fig. 11 from Krüger et al. (2011) as the basis for Fig. 2 in this paper. Lastly, I thank Michael O’Connell for several comments on the manuscript and improving the English syntax.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aage Paus.

Additional information

Communicated by F. Bittmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paus, A. Human impact, soil erosion, and vegetation response lags to climate change: challenges for the mid-Scandinavian pollen-based transfer-function temperature reconstructions. Veget Hist Archaeobot 22, 269–284 (2013). https://doi.org/10.1007/s00334-012-0360-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-012-0360-4

Keywords

Navigation