Skip to main content
Log in

Complex Periodic Bursting Structures in the Rayleigh–van der Pol–Duffing Oscillator

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In the present paper, complex bursting patterns caused by the coupling effect of different frequency scales in the Rayleigh–van der Pol–Duffing oscillator (RVDPDO) driven by the external excitation term are presented theoretically. Seven different kinds of bursting, i.e., bursting of compound “Homoclinic/Homoclinic” mode via “Homoclinic/Homoclinic” hysteresis loop, bursting of compound “fold/Homoclinic-Homoclinic/Hopf” mode via “fold/Homoclinic” hysteresis loop, bursting of compound “fold/Homoclinic-Hopf/Hopf” mode via “fold/Homoclinic” hysteresis loop, bursting of “fold/Homoclinic” mode via “fold/Homoclinic” hysteresis loop, bursting of “fold/Hopf” mode via “fold/fold” hysteresis loop, bursting of “Hopf/Hopf” mode via “fold/fold” hysteresis loop and bursting of “fold/fold” mode are studied by using the phase diagram, time domain signal analysis, phase portrait superposition analysis and slow-fast analysis. With the help of the Melnikov method, the parameter properties related to the beingness of the Homoclinic and Heteroclinic bifurcations chaos of the periodic excitations are investigated. Then, by acting the external forcing term as a slowly changing state variable, the stability and bifurcation characteristics of the generalized autonomous system are given, which performs a major part in the interpretative principles of different bursting patterns. This paper aims to show the sensitivity of dynamical characteristics of RVDPDO to the variation of parameter μ and decide how the choice of the parameters influences the manifold of RVDPDO during the repetitive spiking states. Finally, the validity of the research is tested and verified by the numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Inaba, N., Kousaka, T.: Nested mixed-mode oscillations. Physica D 40, 132152 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Hao, Y.X., Wang, M.X., Zhang, W., et al.: Bending-torsion coupling bursting oscillation of a sandwich conical panel under parametric excitation. J. Sound Vib 495, 115904 (2021)

    Article  Google Scholar 

  • Sharma, S.K., Mondal, A., Mondal, A., et al.: Synchronization and pattern formation in a memristive diffusive neuron model. Int. J. Bifurc. Chaos 31(11), 2130030 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, Y., Liu, W.B., Bao, H., et al.: Bifurcation mechanism of periodic bursting in a simple three-element-based memristive circuit with fast-slow effect. Chaos, Solitons Fractals 131, 109524 (2020)

    Article  MathSciNet  Google Scholar 

  • Alombah, N., Fostsin, H., Romanic, K.: Coexistence of multiple attractors, metastable chaos and bursting oscillations in a multiscroll memristive chaotic circuit. Int. J. Bifurc. Chaos 27(5), 1750067 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Beims, M.W., Gallas, J.A.C.: Predictability of the onset of spiking and bursting in complex chemical reactions. Phys. Chem. Chem. Phys. 20(27), 18539–18546 (2018)

    Article  Google Scholar 

  • Guchenheimer, J., Scheper, C.: A geometric model for mixed-mode oscillations in a chemical system. SIAM J. Appl. Dyn. Syst. 10(1), 92–128 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Njitacke, Z.T., Matze, C.L., Tsotsop, M.F., et al.: Remerging feigenbaum trees, coexisting behaviors and bursting oscillations in a novel 3D generalized Hopfield neural network. Neural Process. Lett. 52(1), 267–289 (2020)

    Article  Google Scholar 

  • Venkadesh, S., Barreto, E., Ascoli, G.A.: Itinerant complexity in networks of intrinsically bursting neurons. Chaos 30(6), 061106 (2020)

    Article  MathSciNet  Google Scholar 

  • Adile, A.D., Kenmogne, F., Tewa, A.K.S., et al.: Dynamics of a mechanical network consisting of discontinuous coupled system oscillators with strong irrational nonlinearities: resonant states and bursting waves. Int. J. Non-Linear Mech. 137, 103812 (2021)

    Article  Google Scholar 

  • Meuwissen, K.P.V., Van Beek, M., Joosten, E.A.J., et al.: Burst and tonic spinal cord stimulation in the mechanical conflict-avoidance system: cognitive-motivational. Neuromodulation 23(5), 605–612 (2020)

    Article  Google Scholar 

  • Patsios, Y., Huzak, R., De Maesschalck, P., et al.: Jump-induced mixed-mode oscillations through piecewise-affine maps. J. Math. Anal. Appl. 505(1), 125641 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • Ma, X.D., Song, J., Wei, M.K., et al.: Complex bursting patterns in a van der Pol-Mathieu-Duffing oscillator. Int. J. Bifurc. Chaos 31(6), 2150082 (2021a)

    Article  MathSciNet  MATH  Google Scholar 

  • Desroches, M., Kirk, V.: Spiking-adding in a canonical three-time-scale model: superslow explosion and folded-saddle canards. SIAM J. Appl. Dyn. Syst. 17(3), 1989–2017 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Farjami, S., Alexander, R.P., Bowie, D., et al.: Bursting in cerebellar stellate cells induced by pharmacological agents: non-sequential spike adding. PloS Comput. Biol. 16(12), e1008463 (2020)

    Article  Google Scholar 

  • Liu, Y.R., Liu, S.Q.: Characterizing mixed-mode oscillations shaped by canard and bifurcation structure in a three-dimensional cardiac cell model. Nonlinear Dyn. 103(3), 2881–2902 (2021)

    Article  Google Scholar 

  • Sekikawa, M., Inaba, N.: Bifurcation structures of nested mixed-mode oscillations. Int. J. Bifurc. Chaos 31(8), 215121 (2021)

    Article  MathSciNet  Google Scholar 

  • Rinzel, J.: Bursting oscillations in an excitable membrane model. Ordinary and partial differential equation. Springer, Berlin (1985)

    MATH  Google Scholar 

  • Bertram, R., Butte, M.J., Kiemel, T., et al.: Topological and phenomenological classification of bursting oscillation. Bull. Math. Biol. 57(3), 413–439 (1995)

    Article  MATH  Google Scholar 

  • Izhikevich, E.M., Hoppensteadt, F.: Classification of bursting mappings. Int. J. Bifurc. Chaos 14(11), 3847–3854 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Harvey, E., Kirk, V., Wechselberger, M., et al.: Multiple timescales, mixed mode oscillations and canards in models of intracellular Calcium dynamics. J. Nonlinear Sci. 21(5), 639–683 (2011)

    Article  MATH  Google Scholar 

  • Bossolini, E., Brons, M., Kristiansen, K.U.: A stiction oscillator with canards: on piecewise smooth nonuniqueness and its resolution by regularization using geometric singular perturbation theory. SIAM Rev. 62(4), 869–897 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Awal, N.M., Epstein, I.R.: Period-doubling route to mixed-mode chaos. Phys. Rev. E 104(2), 024211 (2021)

    Article  MathSciNet  Google Scholar 

  • Zhou, C.Y., Li, Z.J., Xie, F., et al.: Bursting oscillations in Sprott B system with multi-frequency slow excitations: two novel “Hopf/Hopf”-hysteresis-induced bursting and complex AMB rhythms. Nonlinear Dyn. 97, 2799–2811 (2019)

    Article  MATH  Google Scholar 

  • Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos 10(6), 1171–1266 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Mandel, P., Erneux, T.: The slow passage through a steady bifurcation: delay and memory effects. J. Stat. Phys. 48(5), 1059–1070 (1987)

    Article  MathSciNet  Google Scholar 

  • Baer, S.M., Erneux, T., Rinzel, J.: The slow passage through a Hopf bifurcation: delay, memory effects, and resonance. SIAM J. Appl. Math. 49(1), 55–71 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Holden, L., Erneux, T.: Slow passage through a Hopf bifurcation: from oscillatory to steady state solutions. SIAM J. Appl. Math. 53(4), 1045–1058 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Premraj, D., Suresh, K., Banerjee, T., et al.: An experimental study of slow passage through Hopf and pitchfork bifurcations in a parametrically driven nonlinear oscillator. Commun. Nonlinear Sci. Numer. Simul. 37, 212–221 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Maree, G.J.M.: Slow passage through a pitchfork bifurcation. SIAM J. Appl. Math. 56(3), 889–918 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Diminnie, D.C., Haberman, R.: Slow passage through a saddle-center bifurcation. J. Nonlinear Sci. 10, 197–221 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Descroches, M., Kaper, T.J., Krupa, M.: Mixed-mode bursting oscillations: dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster. Chaos 23, 046106 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Diminnie, D.C., Haberman, R.: Slow passage through homoclinic orbits for the unfolding of a saddle-center bifurcation and the change in the adiabatic invariant. Physica D 162, 34–52 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Bao, B.C., Wu, P.Y., Bao, H., et al.: Symmetric periodic bursting behavior and bifurcation mechanism in a third-order memristive diode bridge-based oscillator. Chaos, Solitons Fractals 109, 146–153 (2018)

    Article  Google Scholar 

  • Zhang, Y.T., Cao, Q.J., Huang, W.H.: Bursting oscillations in an isolation system with quasi-zero stiffness. Mech. Syst. Signal Process. 161, 107916 (2021)

    Article  Google Scholar 

  • Gallas, J.A.C., Hauser, M.J.B., Olsen, L.F.: Complexity of a peroxidase-oxidase reaction model. Phys. Chem. Chem. Phys. 23(3), 1943–1955 (2021)

    Article  Google Scholar 

  • Inaba, N., Kousaka, T., Tsubone, T., et al.: Mixed-mode oscillations from a constrained extended Bonhoeffer-van der Pol oscillator with a diode. Chaos 31(7), 073133 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, Y.Y., Gu, H.G.: The distinct stochastic and deterministic dynamics between period-adding and period-doubling bifurcations of neural bursting patterns. Nonlinear Dyn. 87(4), 2541–2562 (2017)

    Article  Google Scholar 

  • Fallah, H.: Symmetric fold/super-Hopf bursting, chaos and mixed-mode oscillations in Pernarowski model of Pancreatic beta-cells. Int. J. Bifurc. Chaos 26(9), 1630022 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Miwadinou, C.H., Hinvi, L.A., Monwanou, A.V., et al.: Nonlinear dynamics of a phi(6)-modified Duffing oscillator: resonant oscillator and transition to chaos. Nonlinear Dyn. 88(1), 97–113 (2017)

    Article  Google Scholar 

  • Barrio, R., Martinez, M.A., Perez, L., et al.: Bifurcations and slow-fast analysis in a cardiac cell model for investigation of early afterdepolarizations. Mathematics 8(6), 880 (2020)

    Article  Google Scholar 

  • Zhang, X.L., Zhang, X., Hu, W.C., et al.: Theoretical, numerical and experimental studies on multi-cycle synchronization of two pairs of reversed rotating exciters. Mech. Syst. Signal Process. 167, 108501 (2022)

    Article  Google Scholar 

  • Gidea, M., De La Llave, R.: Global Melnikov theory in Hamiltonian systems with general time-dependent perturbations. J. Nonlinear Sci. 28(5), 1657–1707 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Miwadinou, C.H., Monwanou, A.V., Hinvi, L.A., et al.: Melnikov chaos in a modified Rayleigh-Duffing oscillator with phi(6) potential. Int. J. Bifurc. Chaos 26(5), 1650085 (2016)

    Article  MATH  Google Scholar 

  • Ma, X.D., Xia, D.X., Jiang, W.A., et al.: Compound bursting behaviors in a forced Mathieu-van der Pol-Duffing system. Chaos, Solitons Fractals 147, 110967 (2021b)

    Article  MathSciNet  Google Scholar 

  • Hua, H.T., Lu, B., Gu, H.G.: Nonlinear mechanism of excitatory autapse-induced reduction or enhancement of firing frequency of neuronal bursting. Acta Physica Sinica 69(9), 090502 (2020)

    Article  Google Scholar 

  • Qian, Y.H., Zhang, D.J., Lin, B.W.: Bursting oscillations and its mechanism of a generalized Duffing-van der Pol system with periodic excitation. Complexity 2021, 5556021 (2021)

    Article  Google Scholar 

  • Zhang, S.H., Zhang, H.L., Wang, C., et al.: Bursting oscillations and bifurcation mechanism in a permanent magnet synchronous motor system with external load perturbation. Chaos, Solitons Fractals 141, 110355 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper is supported by the National Natural Science Foundation of China (Grant Nos. 12002134 and 11972173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xindong Ma.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Communicated by Changpin Li.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Bi, Q. & Wang, L. Complex Periodic Bursting Structures in the Rayleigh–van der Pol–Duffing Oscillator. J Nonlinear Sci 32, 25 (2022). https://doi.org/10.1007/s00332-022-09781-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-022-09781-1

Keywords

Navigation