Skip to main content
Log in

Convex Integration Arising in the Modelling of Shape-Memory Alloys: Some Remarks on Rigidity, Flexibility and Some Numerical Implementations

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We study convex integration solutions in the context of the modelling of shape-memory alloys. The purpose of the article is twofold, treating both rigidity and flexibility properties: Firstly, we relate the maximal regularity of convex integration solutions to the presence of lower bounds in variational models with surface energy. Hence, variational models with surface energy could be viewed as a selection mechanism allowing for or excluding convex integration solutions. Secondly, we present the first numerical implementations of convex integration schemes for the model problem of the geometrically linearised two-dimensional hexagonal-to-rhombic phase transformation. We discuss and compare the two algorithms from Rüland et al. (J Elast. 2019. https://doi.org/10.1007/s10659-018-09719-3; SIAM J Math Anal 50(4):3791–3841, 2018) and give a numerical estimate of the regularity attained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. We remark that we do not claim originality at this point; the addition of the lower bound stated in Theorem 2 and a sketch of its proof was suggested to us by one of the referees whom we would like to thank for this.

  2. Again, we stress that complementing our result by a model-independent lower bound had been suggested to us by one of the referees.

References

  • Agostiniani, V., Blass, T., Koumatos, K.: From nonlinear to linearized elasticity via \(\Gamma \)-convergence: the case of multiwell energies satisfying weak coercivity conditions. Math. Models Methods Appl. Sci. 25(01), 1–38 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, vol. 343. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  • Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63(4), 337–403 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  • Ball, J.M.: Some open problems in elasticity. In: Newton, P., Holmes, P., Weinstein, A. (eds.) Geometry, Mechanics, and Dynamics, pp. 3–59. Springer, Berlin (2002)

    Chapter  Google Scholar 

  • Ball, J.M.: Mathematical models of martensitic microstructure. Mater. Sci. Eng. A 378(1–2), 61–69 (2004). European Symposium on Martensitic Transformation and Shape-Memory

    Article  Google Scholar 

  • Ball, J.M., James, R.D.: Fine phase mixtures as minimizers of energy. In: Antman, S.S., Brezis, H., Coleman, B.D., Feinberg, M., Nohel, J.A., Ziemer, W.P. (eds.) Analysis and Continuum Mechanics, pp. 647–686. Springer (1989)

  • Ball, J.M., Mora-Corral, C.: A variational model allowing both smooth and sharp phase boundaries in solids. Commun. Pure Appl. Anal. 8(1), 55–81 (2009)

    MathSciNet  MATH  Google Scholar 

  • Ball, J.M., Cesana, P., Hambly, B.: A probabilistic model for martensitic avalanches. In: MATEC Web of Conferences, vol. 33. EDP Sciences (2015)

  • Bhattacharya, K.: Comparison of the geometrically nonlinear and linear theories of martensitic transformation. Contin. Mech. Thermodyn. 5(3), 205–242 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Bhattacharya, K.: Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape-Memory Effect. Oxford Series on Materials Modeling. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  • Brezis, H., Mironescu, P.: Gagliardo–Nirenberg, composition and products in fractional Sobolev spaces. J. Evol. Equ. 1(4), 387–404 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Buckmaster, T., De Lellis, C., Székelyhidi Jr, L., Vicol, V.: Onsager’s conjecture for admissible weak solutions. arXiv preprint arXiv:1701.08678 (2017)

  • Bui, H.-Q., Candy, T.: A characterisation of the Besov–Lipschitz and Triebel–Lizorkin spaces using Poisson like kernels. arXiv preprint arXiv:1502.06836 (2015)

  • Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(8), 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Capella, A., Otto, F.: A rigidity result for a perturbation of the geometrically linear three-well problem. Commun. Pure Appl. Math. 62(12), 1632–1669 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Capella, A., Otto, F.: A quantitative rigidity result for the cubic-to-tetragonal phase transition in the geometrically linear theory with interfacial energy. Proc. R. Soc. Edinb. Sect. A Math. 142, 273–327 (2012). https://doi.org/10.1017/S0308210510000478

    Article  MathSciNet  MATH  Google Scholar 

  • Cesana, P., Hambly, B.: A probabilistic model for interfaces in a martensitic phase transition. arXiv preprint arXiv:1810.04380 (2018)

  • Cesana, P., Porta, M., Lookman, T.: Asymptotic analysis of hierarchical martensitic microstructure. J. Mech. Phys. Solids 72, 174–192 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Chan, A., Conti, S.: Energy scaling and branched microstructures in a model for shape-memory alloys with so (2) invariance. Math. Models Methods Appl. Sci. 25(06), 1091–1124 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Conti, S.: Branched microstructures: scaling and asymptotic self-similarity. Commun. Pure Appl. Math. 53(11), 1448–1474 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Conti, S., De Lellis, C., Székelyhidi, L.: h-Principle and rigidity for \({C}^{1, \alpha }\) isometric embeddings. In: Holden, H., Karlsen, K.H. (eds.) Nonlinear Partial Differential Equations, pp. 83–116. Springer (2012)

  • Conti, S., Klar, M., Zwicknagl, B.: Piecewise affine stress-free martensitic inclusions in planar nonlinear elasticity. Proc. R. Soc. A 473(2203), 20170235 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Dacorogna, B., Marcellini, P.: Implicit Partial Differential Equations, vol. 37. Springer, Berlin (2012)

    MATH  Google Scholar 

  • Dacorogna, B., Marcellini, P., Paolini, E.: An explicit solution to a system of implicit differential equations. In: Annales de l’Institut Henri Poincare (C) Non Linear Analysis, vol. 25, pp. 163–171. Elsevier (2008a)

  • Dacorogna, B., Marcellini, P., Paolini, E.: Lipschitz-continuous local isometric immersions: rigid maps and origami. Journal de mathématiques pures et appliquées 90(1), 66–81 (2008b)

    Article  MathSciNet  MATH  Google Scholar 

  • Dacorogna, B., Marcellini, P., Paolini, E.: Origami and partial differential equations. Notices AMS 57(5), 598–606 (2010)

    MathSciNet  MATH  Google Scholar 

  • Dal Maso, G., Negri, M., Percivale, D.: Linearized elasticity as \(\gamma \)-limit of finite elasticity. Set Valued Anal. 10(2–3), 165–183 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Dolzmann, G., Müller, S.: The influence of surface energy on stress-free microstructures in shape memory alloys. Meccanica 30, 527–539 (1995a). https://doi.org/10.1007/BF01557083

    Article  MathSciNet  MATH  Google Scholar 

  • Dolzmann, G., Müller, S.: Microstructures with finite surface energy: the two-well problem. Arch. Ration. Mech. Anal. 132, 101–141 (1995b)

    Article  MathSciNet  MATH  Google Scholar 

  • Dolzmann, G., Kirchheim, B., Müller, S., Šverák, V.: The two-well problem in three dimensions. Calc. Var. Partial Differ. Equ. 10, 21–40 (2000). https://doi.org/10.1007/PL00013455

    Article  MathSciNet  MATH  Google Scholar 

  • Frisch, U.: Turbulence: The Legacy of AN Kolmogorov. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  • Gromov, M.L.: Convex integration of differential relations i. Izv. Math. 7(2), 329–343 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • Inamura, T.: Martensitic material. An experiment from experiment of Tomonari Inamura’s group. https://www.newton.ac.uk/event/dnm. Accessed 08 Jan 2018

  • Isett, P.: A proof of Onsager’s conjecture. arXiv preprint arXiv:1608.08301 (2016)

  • Khachaturyan, A.G.: Theory of Structural Transformations in Solids. Courier Corporation, North Chelmsford (2013)

    Google Scholar 

  • Kirchheim, B.: Lipschitz minimizers of the 3-well problem having gradients of bounded variation. (1998). https://www.mis.mpg.de/de/publications/preprints/1998/prepr1998-12.html

  • Kirchheim, B.: Rigidity and geometry of microstructures. MPI-MIS Lect. Notes (2003). https://www.mis.mpg.de/publications/other-series/ln/lecturenote-1603.html

  • Kitano, Y., Kifune, K.: HREM study of disclinations in MgCd ordered alloy. Ultramicroscopy 39(1–4), 279–286 (1991)

    Article  Google Scholar 

  • Knüpfer, H., Kohn, R.V., Otto, F.: Nucleation barriers for the cubic-to-tetragonal phase transformation. Commun. Pure Appl. Math. 66(6), 867–904 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Kohn, R.V., Müller, S.: Surface energy and microstructure in coherent phase transitions. Commun. Pure Appl. Math. 47(4), 405–435 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Lenzmann, E., Schikorra, A.: Sharp commutator estimates via harmonic extensions. arXiv preprint arXiv:1609.08547 (2016)

  • Müller, S.: Variational models for microstructure and phase transitions. In: Hildebrandt, S., Struwe, M. (eds.) Calculus of Variations and Geometric Evolution Problems, pp. 85–210. Springer, Berlin (1999)

    Chapter  Google Scholar 

  • Müller, S., Šverák, V.: Unexpected solutions of first and second order partial differential equations. In: International Congress, p. 691 (1998)

  • Müller, S., Šverák, V.: Convex integration with constraints and applications to phase transitions and partial differential equations. J. Eur. Math. Soc. 1, 393–422 (1999). https://doi.org/10.1007/s100970050012

    Article  MathSciNet  MATH  Google Scholar 

  • Opic, B., Kufner, A.: Hardy-Type Inequalities, vol. 219. Halsted Press, New York (1990)

    MATH  Google Scholar 

  • Pedregal, P.: Parametrized Measures and Variational Principles, vol. 30. Birkhauser, Basel (1997)

    Book  MATH  Google Scholar 

  • Rüland, A.: The cubic-to-orthorhombic phase transition: rigidity and non-rigidity properties in the linear theory of elasticity. Arch. Ration. Mech. Anal. 221(1), 23–106 (2016a)

    Article  MathSciNet  MATH  Google Scholar 

  • Rüland, A.: A rigidity result for a reduced model of a cubic-to-orthorhombic phase transition in the geometrically linear theory of elasticity. J. Elast. 123(2), 137–177 (2016b)

    Article  MathSciNet  MATH  Google Scholar 

  • Rüland, A., Zillinger, C., Zwicknagl, B.: Higher Sobolev regularity of convex integration solutions in elasticity: The planar geometrically linearized hexagonal-to-rhombic phase transformation. J Elast. (2019). https://doi.org/10.1007/s10659-018-09719-3

    MATH  Google Scholar 

  • Rüland, A., Zillinger, C., Zwicknagl, B.: Higher Sobolev regularity of convex integration solutions in elasticity: the Dirichlet problem with affine data in \(\text{ int }(K^{lc})\). SIAM J. Math. Anal. 50(4), 3791–3841 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Sickel, W.: Pointwise multipliers of Lizorkin-Triebel spaces. In: Rossmann, J., Takáč, P., Wildenhain, G. (eds.) The Maz’ya Anniversary Collection, pp. 295–321. Springer, Berlin (1999)

    Chapter  Google Scholar 

  • Simon, T.: Rigidity of branching microstructures in shape memory alloys. arXiv preprint arXiv:1705.03664 (2017)

  • Székelyhidi Jr., L.: From isometric embeddings to turbulence. In: HCDTE Lecture Notes. Part II. Nonlinear Hyperbolic PDEs, Dispersive and Transport Equations. AIMS Series on Applied Mathematics, vol. 7, pp. 195–255. American Institute of Mathematical Sciences (AIMS) (2013)

  • Tao, T.: Nonlinear Dispersive Equations: Local and Global Analysis, vol. 106. American Mathematical Society, Providence (2006)

    Book  MATH  Google Scholar 

  • Torrents, G., Illa, X., Vives, E., Planes, A.: Geometrical model for martensitic phase transitions: understanding criticality and weak universality during microstructure growth. Phys. Rev. E 95(1), 013001 (2017)

    Article  Google Scholar 

  • Triebel, H.: Theory of Function Spaces. III. Monographs in Mathematics, vol. 100. BirkhauserVerlag, Basel (2006)

    MATH  Google Scholar 

  • Yu Pasko, A., Likhachev, A.A., Koval, Y.N., Kolomytsev, V.: 2d Fourier analysis and its application to study of scaling properties and fractal dimensions of \(\varepsilon \)-martensite distribution in \(\gamma \)-matrix of Fe-Mn-Si alloy. Le J. de Phys. IV 7(C5), C5–435 (1997)

    Google Scholar 

Download references

Acknowledgements

During the research leading to these results Jamie M. Taylor held positions at the University of Oxford, at Kent State University and BCAM. His research received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 291053. Furthermore, he has been partially supported by the Basque Government through the BERC 2018-2021 programme and by Spanish Ministry of Economy and Competitiveness MINECO through BCAM Severo Ochoa excellence accreditation SEV-2017-0718 and through project MTM2017-82184-R funded by (AEI/FEDER, UE) and acronym “DESFLU”. Christian Zillinger acknowledges the support of an AMS-Simons Travel Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie M. Taylor.

Additional information

Communicated by Paul Newton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Fractional Poincaré Inequalities

In this last section, for self-containedness, we recall a possible proof of the fractional Poincaré inequality (for fractional Besov-type spaces), which is used in different forms in Sect. 2. We start with the \(L^2\)-based version:

Lemma A.1

Let \(s\in (0,1)\) and \(n\ge 1\). Let \(\Omega \subset \mathbb {R}^n\) be an open, bounded \(C^{1,1}\) domain. Let \(u\in H^{s}(\mathbb {R}^n)\) with \(\text {supp}(u) \subset \overline{\Omega }\) and denote \(\Omega _{\delta }=\{x\in \Omega : {{\,\mathrm{dist}\,}}(x,\partial \Omega )\ge \delta \}\) for \(\delta >0\). Then, there exists \(C=C(s,\Omega ,n)>1\) such that

$$\begin{aligned} \Vert u\Vert _{L^2(\Omega _{\delta }{\setminus } \Omega _{2\delta })} \le C \delta ^{s} \Vert u\Vert _{H^{s}(\mathbb {R}^n)}. \end{aligned}$$
(70)

Proof

We use the Caffarelli–Silvestre extension \(\overline{u}\) of u (Caffarelli and Silvestre 2007), which is the \(H^{1}(\mathbb {R}^{n+1}_+, x_{n+1}^{1-2s})\) solution to the equation

$$\begin{aligned} \nabla \cdot x_{n+1}^{1-2s} \nabla \overline{u}&= 0 \text{ in } \mathbb {R}^{n+1}_+,\\ \overline{u}&= u \text{ on } \mathbb {R}^n \times \{0\}. \end{aligned}$$

For \(x_1 \in \Omega _{\delta } {\setminus } \Omega _{2\delta }\), \(x_2=p(x_1) \in \mathbb {R}^n {\setminus } \overline{\Omega }\) with \(|x_1-x_2|\le 4 \delta \) and \(\tilde{\delta } \in [\delta , 2\delta ]\), the fundamental theorem and Hölder’s inequality yield

$$\begin{aligned} |u(x_1)|^2&= |\overline{u}(x_1,0)|^2 \le 2|\overline{u}(x_1,\tilde{\delta })|^2 + 2 \left( \int \limits _{0}^{\tilde{\delta }}|\partial _t \overline{u}(x_1,t)| \mathrm{d}t \right) ^2\\&\le 2|\overline{u}(x_1,\tilde{\delta })|^2 + C \tilde{\delta }^{2s}\int \limits _{0}^{\tilde{\delta }} t^{1-2s}|\partial _t \overline{u}(x_1,t)|^2 \mathrm{d}t\\&\le 2 |\overline{u}(p(x_1),\tilde{\delta })|^2 + C \tilde{\delta }^2 \int \limits _{0}^{1}|\nabla ' \overline{u}(\tau x_1 + (1-\tau )p(x_1), \tilde{\delta })|^2 \mathrm{d}\tau \\&\quad + C \tilde{\delta }^{2s}\int \limits _{0}^{\tilde{\delta }} t^{1-2s}|\partial _t \overline{u}(x_1,t)|^2 \mathrm{d}t\\&\le 2\tilde{\delta }^2 \int \limits _{0}^{1}|\nabla ' \overline{u}(\tau x_1 + (1-\tau )p(x_1), \tilde{\delta })|^2 \mathrm{d}\tau + C \tilde{\delta }^{2s}\int \limits _{0}^{\tilde{\delta }} t^{1-2s}|\partial _t \overline{u}(x_1,t)|^2 \mathrm{d}t\\&\quad + C \tilde{\delta }^{2s}\int \limits _{0}^{\tilde{\delta }} t^{1-2s}|\partial _t \overline{u}(p(x_1),t)|^2 \mathrm{d}t. \end{aligned}$$

Here the constant \(C>1\) changes from line to line and depends on s but not on \(\delta \). In deriving the above estimate, we applied the fundamental theorem thrice: first in the normal direction (where we then used Hölder’s inequality to insert the weight \(t^{1-2s}\)), then in the tangential directions and finally once more in the normal direction (where we used the vanishing Dirichlet data for \(u(p(x_1))=\overline{u}(p(x_1),0)\)). Estimating the integrals involving the normal derivative by using \(\delta <\tilde{\delta }\le 2\delta \), we thus infer

$$\begin{aligned} |u(x_1)|^2&\le 2\tilde{\delta }^2 \int \limits _{0}^{1}|\nabla ' \overline{u}(\tau x_1 + (1-\tau )p(x_1), \tilde{\delta })|^2 \mathrm{d}\tau + C \delta ^{2s}\int \limits _{0}^{2\delta } t^{1-2s}|\partial _t \overline{u}(x_1,t)|^2 \mathrm{d}t\\&\quad + C \delta ^{2s}\int \limits _{0}^{2\delta } t^{1-2s}|\partial _t \overline{u}(p(x_1),t)|^2 \mathrm{d}t. \end{aligned}$$

Averaging over \(\tilde{\delta } \in [\delta , 2\delta ]\) yields

$$\begin{aligned} |u(x_1)|^2&\le 2\delta ^{-1} \int \limits _{\delta }^{2\delta } \tilde{\delta }^2 \int \limits _{0}^{1}|\nabla ' \overline{u}(\tau x_1 + (1-\tau )p(x_1), \tilde{\delta })|^2 \mathrm{d}\tau \mathrm{d} \tilde{\delta }\\&\quad + C \delta ^{2s}\int \limits _{0}^{2\delta } t^{1-2s}|\partial _t \overline{u}(x_1,t)|^2 \mathrm{d}t + C \delta ^{2s}\int \limits _{0}^{2\delta } t^{1-2s}|\partial _t \overline{u}(p(x_1),t)|^2 \mathrm{d}t\\&= 2\delta ^{-1} \int \limits _{\delta }^{2\delta } \tilde{\delta }^{1+2s} \tilde{\delta }^{1-2s} \int \limits _{0}^{1}|\nabla ' \overline{u}(\tau x_1 + (1-\tau )p(x_1), \tilde{\delta })|^2 \mathrm{d}\tau \mathrm{d} \tilde{\delta }\\&\quad + C \delta ^{2s}\int \limits _{0}^{2\delta } t^{1-2s}|\partial _t \overline{u}(x_1,t)|^2 \mathrm{d}t + C \delta ^{2s}\int \limits _{0}^{2\delta } t^{1-2s}|\partial _t \overline{u}(p(x_1),t)|^2 \mathrm{d}t\\&\le C \delta ^{-1} \delta ^{1+2s} \int \limits _{\delta }^{2\delta } \tilde{\delta }^{1-2s} \int \limits _{0}^{1}|\nabla ' \overline{u}(\tau x_1 + (1-\tau )p(x_1), \tilde{\delta })|^2 \mathrm{d}\tau \mathrm{d} \tilde{\delta }\\&\quad + C \delta ^{2s}\int \limits _{0}^{2\delta } t^{1-2s}|\partial _t \overline{u}(x_1,t)|^2 \mathrm{d}t + C \delta ^{2s}\int \limits _{0}^{2\delta } t^{1-2s}|\partial _t \overline{u}(p(x_1),t)|^2 \mathrm{d}t\\&\le C \delta ^{2s} \int \limits _{0}^{2\delta } \int \limits _{0}^{1} t^{1-2s} |\nabla ' \overline{u}(\tau x_1 + (1-\tau )p(x_1), t)|^2 \mathrm{d}\tau \mathrm{d}t\\&\quad + C \delta ^{2s}\int \limits _{0}^{2\delta } t^{1-2s}|\partial _t \overline{u}(x_1,t)|^2 \mathrm{d}t + C \delta ^{2s}\int \limits _{0}^{2\delta } t^{1-2s}|\partial _t \overline{u}(p(x_1),t)|^2 \mathrm{d}t. \end{aligned}$$

Finally, integrating over \(x_1 \in \Omega _{\delta } {\setminus } \Omega _{2\delta }\) leads to

$$\begin{aligned} \Vert u\Vert _{L^2(\Omega _{\delta }{\setminus } \Omega _{2\delta })}^2&\le C \delta ^{2s} \int \limits _{0}^1 \int \limits _{0}^{2\delta } t^{1-2s} \Vert \nabla ' \overline{u}(\tau \cdot + (1-\tau )p(\cdot ),t)\Vert _{L^2(\Omega _{\delta }{\setminus } \Omega _{2\delta })}^2 \mathrm{d}t \mathrm{d}\tau \\&\quad + 2C \delta ^{2s} \Vert t^{\frac{1-2s}{2}} \partial _t \overline{u}\Vert _{L^2((\Omega _{\delta } {\setminus } \Omega _{2\delta }) \times [0,2\delta ])}^2\\&\le C \delta ^{2s} \Vert t^{\frac{1-2s}{2}} \nabla \overline{u}\Vert _{L^2(\Omega \times [0,2\delta ])}^2\\&\le C \delta ^{2s} \Vert t^{\frac{1-2s}{2}} \nabla \overline{u}\Vert _{L^2(\mathbb {R}^{n+1}_+)}^2. \end{aligned}$$

Hence, using that [see Caffarelli and Silvestre (2007)]

$$\begin{aligned} \Vert t^{\frac{1-2s}{2}} \nabla \overline{u}\Vert _{L^2(\mathbb {R}^{n+1}_+)}^2 \le C \Vert u\Vert _{\dot{H}^s(\mathbb {R}^n)}, \end{aligned}$$

we obtain the desired estimate (70). \(\square \)

Similarly, we have the analogue of this in Sobolev and Besov spaces:

Lemma A.2

Let \(s\in (0,1)\), \(p\in (1,\infty )\) and \(n\ge 1\). Let \(\Omega \subset \mathbb {R}^n\) be an open, bounded \(C^{1,1}\) domain. Let \(u\in W^{s,p}(\mathbb {R}^n)\) with \(\text {supp}(u) \subset \overline{\Omega }\) and denote \(\Omega _{\delta }=\{x\in \Omega : {{\,\mathrm{dist}\,}}(x,\partial \Omega )\ge \delta \}\) for \(\delta >0\). Then, there exists \(C=C(s,p,\Omega ,n)>1\) such that

$$\begin{aligned} \Vert u\Vert _{L^p(\Omega _{\delta }{\setminus } \Omega _{2\delta })} \le C \delta ^{s} \Vert u\Vert _{W^{s,p}(\mathbb {R}^n)}. \end{aligned}$$
(71)

Proof

The argument follows essentially as above. However, for the estimate in the normal direction, we use

$$\begin{aligned} |\overline{u}(x_1,0)|^p&\le C |\overline{u}(x_1,\delta )|^p + C\left( \int \limits _{0}^{\delta } \partial _t \overline{u} \mathrm{d}t\right) ^{p}\\&\le C|\overline{u}(x_1,\delta )|^p + C\int \limits _{0}^{\delta } |t^{1-\frac{1}{p}-s }\partial _t \overline{u}|^p \mathrm{d}t \left( \int \limits _{0}^{\delta } t^{-1+\frac{sp}{p-1}}\mathrm{d}t \right) ^{p-1}\\&\le C|\overline{u}(x_1,\delta )|^p + C\delta ^{sp} \int \limits _{0}^{\delta } t^{p-1-s p}|\partial _t \overline{u}|^p \mathrm{d}t . \end{aligned}$$

Combining this with estimates in the tangential directions similarly as in the proof of Lemma A.2, we obtain

$$\begin{aligned} \Vert u\Vert _{L^p(\Omega _{\delta }{\setminus } \Omega _{2\delta })}&\le C \delta ^{s} \Vert t^{1-\frac{1}{p}-s}\nabla \overline{u}\Vert _{L^p(\mathbb {R}^{n+1}_+)} \le C \delta ^{s} \Vert u\Vert _{W^{s,p}(\mathbb {R}^n)}. \end{aligned}$$

Here we used the trace characterisation of \(W^{s,p}(\mathbb {R}^n)\), see Lenzmann and Schikorra (2016, Section 10), where the authors rely on the characterisation from Bui and Candy (2015). \(\square \)

A similar argument using the characterisation of Besov spaces from Lenzmann and Schikorra (2016, Section 10) [where the authors again rely on the characterisation from Bui and Candy (2015)] also yields a similar Poincaré estimate in Besov spaces.

The Pseudocode of Convex Integration Algorithm

In order to allow for a self-contained and more precise understanding of the algorithms used in generating the pictures from above, we include a pseudocode variant of the code which we have used. In the sequel, we make use of the convention that the ith component of a function f is described by f[i].

Algorithm B.1

Let \(M \in \mathcal {M}:=\{N \in \mathbb {R}^{2\times 2}: \ e(N)\in {{\,\mathrm{intconv}\,}}(\{e^{(1)}, e^{(2)}, e^{(3)}\})\}\), where \(e^{(1)}, e^{(2)}, e^{(3)}\) are as in (68). Let \(\Omega \subset \mathbb {R}^2\) be a triangle.

  1. (1a)

    Variables. We consider

    • the displacement \(u_k: \Omega \rightarrow \mathbb {R}^2\) at step k,

    • a collection of (up to null-sets disjoint) triangles \(\widehat{\Omega }_k = \{\Omega _1^k,\dots ,\Omega _{j_k}^k\}\), which cover \(\Omega \),

    • and the error in matrix space \(\epsilon _k: \widehat{\Omega }_k \rightarrow (0,1)\) at step k, which is constant on each subset of \(\widehat{\Omega }_k\).

  2. (1b)

    Functions. We consider a “covering function”, which covers a given triangle by “good sets”, on which the deformation \(u_k\) will be improved, and a “remainder”. More precisely,

    $$\begin{aligned} {{\,\mathrm{Cover}\,}}_{v}:&\mathcal {T} \times \mathcal {M} \rightarrow \mathcal {R} \times \mathcal {T},\\&(T,M) \mapsto (\{Q_1,\dots ,Q_{j(T,M)}\} , \{T_1,\dots , T_{l(T,M)}\}). \end{aligned}$$

    Here \(\mathcal {T}\) is the set of all triangles, \(\mathcal {R}\) is a set of certain quadrilaterals [these differ in Rüland et al. 2019, 2018] and \(\mathcal {M}:=\{M\in \mathbb {R}^{2\times 2}: \ e(M) \in {{\,\mathrm{intconv}\,}}(\{e^{(1)}, e^{(2)}, e^{(3)}\}) \}\). For each \(T \in \mathcal {T}\) and \(M \in \mathcal {M}\) we have an (up to null-sets) disjoint covering

    $$\begin{aligned} T = \bigcup \limits _{Q \in {{\,\mathrm{Cover}\,}}_{v}(T,M)[1]} Q \cup \bigcup \limits _{\tilde{T}\in {{\,\mathrm{Cover}\,}}_{v}(T,M)[2]}\tilde{T}, \ \end{aligned}$$

    with

    $$\begin{aligned} \frac{\left| \bigcup \limits _{Q \in {{\,\mathrm{Cover}\,}}_{v}(T,M)[1]} Q \right| }{|T|} \ge v. \end{aligned}$$

    The sets \(Q \in {{\,\mathrm{Cover}\,}}_v(T,M)[1]\) are the “good sets”, on which the current displacement gradient \(\nabla u_k\) will be modified and pushed towards the energy wells. The sets \(\tilde{T} \in {{\,\mathrm{Cover}\,}}_v(T,M)[2]\) are the “remainders” on which the displacement \(u_k\) is not changed.

    We further consider a “replacement function”, which improves the current displacement gradient in the sense that the replaced deformation gradient is closer to the wells (or at least closer to the wells on a large portion of the domain). This depends on the current displacement gradient, the underlying domain and the error in matrix space. As an output it yields

    • the level sets (in the form of a finite collection of triangles) of the new improved deformation,

    • a piecewise affine function whose symmetric gradient attains values in \({{\,\mathrm{intconv}\,}}(\{e^{(1)}, e^{(2)}, e^{(3)}\})\),

    • and an updated error in matrix space.

    More precisely,

    $$\begin{aligned} {{\,\mathrm{Replace}\,}}:&\mathcal {R} \times \mathcal {A}_{{{\,\mathrm{intconv}\,}}(\{e^{(1)}, e^{(2)}, e^{(3)}\})} \times (0,1) \\&\quad \rightarrow \mathcal {T} \times \mathcal {A}_{{{\,\mathrm{intconv}\,}}(\{e^{(1)}, e^{(2)}, e^{(3)}\})} \times (0,1),\\&\quad (Q,w_{\text {old}},\epsilon ) \mapsto (\{T_{1},\dots ,T_{j_0}\} , w, \tilde{\epsilon }) \end{aligned}$$

    Here \(\mathcal {A}_{{{\,\mathrm{intconv}\,}}(\{e^{(1)}, e^{(2)}, e^{(3)}\})}\) denotes the set of piecewise affine deformations with symmetric gradients in \({{\,\mathrm{intconv}\,}}\{e^{(1)},e^{(2)},e^{(3)}\}\). Furthermore, \(w|_{\partial Q}=w_{old}|_{\partial Q}\).

  3. (2)

    Initialisation. We begin by setting \(u_0(x)=Mx\), \(\epsilon _0 = \epsilon _0(M)\), \(\widehat{\Omega }_0 = \{\Omega \}\).

  4. (3)

    Iteration step. The algorithm proceeds iteratively: Assume that \(u_k\), \(\epsilon _k\) and \(\widehat{\Omega }_k\) with \(k\ge 0\) are already given. Then on each \(\Omega _{j}^k \in \widehat{\Omega }_k\) for which \(e(\nabla u_k)|_{\Omega _j^k} \notin \{e^{(1)}, e^{(2)}, e^{(3)}\}\), apply the function \({{\,\mathrm{Cover}\,}}_v(\Omega _{j}^k, \nabla u_k|_{\Omega _j^k})\). Let \({{\,\mathrm{Cover}\,}}_v(\Omega _{j}^k,\nabla u_k|_{\Omega _j^k})[1]= \{\Omega _{j,1}^k,\dots ,\Omega _{j,m(j,k)}^k\}\).

    For each \(\Omega _{j,m}^k \in {{\,\mathrm{Cover}\,}}_v(\Omega _j^k,\nabla u_k|_{\Omega _j^k})[1]\) apply the function \({{\,\mathrm{Replace}\,}}(\Omega _{j,m}^k, u_k |_{\Omega _{j}^k},\epsilon _k)\). This yields

    1. (i)

      an up to null-sets disjoint covering of \(\Omega _{j,m}^k\) into triangles

      $$\begin{aligned} \{\Omega _{j,m,1}^k,\dots ,\Omega _{j,m,l(j,m,k)}^k\}:={{\,\mathrm{Replace}\,}}(\Omega _{j,m}^k, u_k|_{\Omega _{j}^k},\epsilon _k)[1]; \end{aligned}$$
    2. (ii)

      a function \(v_{j,m,k}:={{\,\mathrm{Replace}\,}}(\Omega _{j,m}^k, u_k|_{\Omega _{j}^k},\epsilon _k)[2]: \Omega _{j,m}^k \rightarrow \mathbb {R}^2\) whose gradient is constant on each of the sets \(\Omega _{j,m,l}^k\) with \(l\in \{1,\dots , l(j,m,k)\}\) and for which \(v_{j,m,k}(x)=u_k(x) \text{ for } \text{ all } x \in \partial \Omega _{j,m}^k\);

    3. (iii)

      a parameter \(\tilde{\epsilon }_{j,m,k}:={{\,\mathrm{Replace}\,}}(\Omega _{j,m}^k, u_k |_{\Omega _{j}^k},\epsilon _k)[3]\).

    We then set

    $$\begin{aligned} u_{k+1}|_{\Omega _{j,m}^k}&=v_{j,m,k} \text{ and } u_{k+1}|_{{{\,\mathrm{Cover}\,}}_v(\Omega _j^k,\nabla u_k|_{\Omega _j^k})[2]}=u_k|_{{{\,\mathrm{Cover}\,}}_v(\Omega _j^k,\nabla u_k|_{\Omega _j^k})[2]},\\ \widetilde{\Omega }_{k+1}&= \bigcup \limits _{j,m} {{\,\mathrm{Replace}\,}}(\Omega _{j,m}^k, u|_{\Omega _{j}^k},\epsilon _k)[1] \cup \bigcup \limits _{j} {{\,\mathrm{Cover}\,}}_v(\Omega _j^k,\nabla u_k|_{\Omega _j^k})[2],\\ \epsilon _{k+1}|_{T}&= \left\{ \begin{array}{ll} \tilde{\epsilon }_{j,m,k} &{} \text{ if } T \subset \Omega _{j,m,l}^k \in {{\,\mathrm{Cover}\,}}_v(\Omega _j^k,\nabla u_k|_{\Omega _j^k})[1] \text{ for } \text{ some } j \in \{1,\dots ,j_k\},\\ \epsilon _{k}|_{T} &{} \text{ if } T \in {{\,\mathrm{Cover}\,}}_v(\Omega _j^k,\nabla u_k|_{\Omega _j^k})[2] \text{ for } \text{ some } j \in \{1,\dots ,j_k\}. \end{array} \right. \end{aligned}$$

    If on \(\Omega _{j}^k\) we already have \(e(\nabla u_k)|_{\Omega _{j}^k} \in \{e^{(1)}, e^{(2)}, e^{(3)}\}\), we set \(u_{k+1}|_{\Omega _j^k} = u_{k}|_{\Omega _j^k}\) and

    $$\begin{aligned} \widehat{\Omega }_{k+1}=\widetilde{\Omega }_{k+1}\cup \{\Omega _{j}^{k}\in \widehat{\Omega }_k: \nabla u_k|_{\Omega _{j}^{k}}\in \{e^{(1)}, e^{(2)},e^{(3)}\} \text{ a.e. }\}. \end{aligned}$$

It has been shown in Rüland et al. (2019, 2018) that this procedure is well defined, if the function \({{\,\mathrm{Replace}\,}}\) is chosen appropriately. (There is a slight subtlety in that in those articles we approximate domains by rectangles, but this does not matter for the non-quantitative algorithm which is used here.) As explained above, in spite of their similar overall structure, the algorithms from Rüland et al. (2019, 2018), however, differ substantially in their underlying replacement constructions encoded by the function \({{\,\mathrm{Replace}\,}}\). The function \({{\,\mathrm{Cover}\,}}_v\) is essentially given by a greedy algorithm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rüland, A., Taylor, J.M. & Zillinger, C. Convex Integration Arising in the Modelling of Shape-Memory Alloys: Some Remarks on Rigidity, Flexibility and Some Numerical Implementations. J Nonlinear Sci 29, 2137–2184 (2019). https://doi.org/10.1007/s00332-019-09540-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-019-09540-9

Keywords

Mathematics Subject Classification

Navigation