Skip to main content
Log in

Travelling Waves for the Nonlinear Schrödinger Equation with General Nonlinearity in Dimension Two

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We investigate numerically the two-dimensional travelling waves of the nonlinear Schrödinger equation for a general nonlinearity and with nonzero condition at infinity. In particular, we are interested in the energy–momentum diagrams. We propose a numerical strategy based on the variational structure of the equation. The key point is to characterize the saddle points of the action as minimizers of another functional that allows us to use a gradient flow. We combine this approach with a continuation method in speed in order to obtain the full range of velocities. Through various examples, we show that even though the nonlinearity has the same behaviour as the well-known Gross–Pitaevskii nonlinearity, the qualitative properties of the travelling waves may be extremely different. For instance, we observe cusps, a modified KP-I asymptotic in the transonic limit, various multiplicity results and “one-dimensional spreading” phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  • Abid, M., Huepe, C., Metens, S., Nore, C., Pham, C.T., Tuckerman, L.S., Brachet, M.E.: Gross-Pitaevskii dynamics of Bose–Einstein condensates and superfluid turbulence. Fluid Dyn. Res. 33(5–6), 509–544 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Akhmediev, N., Ankiewicz, A., Grimshaw, R.: Hamiltonian-versus-energy diagrams in soliton theory. Phys. Rev. E 59(5), 6088–6096 (1999)

    Article  MathSciNet  Google Scholar 

  • Barashenkov, I.: Stability criterion for dark solitons. Phys. Rev. Lett. 77, 1193–1197 (1996)

    Article  Google Scholar 

  • Barashenkov, I., Panova, E.: Stability and evolution of the quiescent and travelling solitonic bubbles. Phys. D 69(1–2), 114–134 (1993)

    Article  MATH  Google Scholar 

  • Benjamin, T.: The stability of solitary waves. Proc. Roy. Soc. (London) Ser. A 328, 153–183 (1972)

    Article  MathSciNet  Google Scholar 

  • Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rational Mech. Anal. 82(4), 313–345 (1981)

    MathSciNet  Google Scholar 

  • Berestycki, H., Lions, P.-L., Peletier, L.: An ODE approach to the existence of positive solutions for semilinear problems in \({\mathbb{R}}^N\). Indiana Univ. Math. J. 30(1), 141–157 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Berloff, N.: Evolution of rarefaction pulses into vortex rings. Phys. Rev. B 65, 174518 (2002)

    Article  Google Scholar 

  • Berloff, N.: Pade approximations of solitary wave solutions of the Gross–Pitaevskii equation. J. Phys. A Math. Gen. 37(5), 1617–1632 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Berloff, N.: Vortex splitting in subcritical nonlinear Schrödinger equations. Special issue on vortex rings. Fluid Dyn. Res. 41, 051403 (2009)

    Article  MathSciNet  Google Scholar 

  • Berloff, N., Roberts, P.: Motions in a Bose condensate: X. New results on stability of axisymmetric solitary waves of the Gross-Pitaevskii equation. J. Phys. A Math. Gen. 37, 11333–11351 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Béthuel, F., Gravejat, P., Saut, J.-C.: On the KP-I transonic limit of two-dimensional Gross–Pitaevskii travelling waves. Dyn. PDE 5(3), 241–280 (2008)

    MATH  Google Scholar 

  • Béthuel, F., Gravejat, P., Saut, J.-C.: Travelling waves for the Gross–Pitaevskii equation. II. Commun. Math. Phys. 285(2), 567–651 (2009)

    Article  MATH  Google Scholar 

  • Béthuel, F., Orlandi, G., Smets, D.: Vortex rings for the Gross–Pitaevskii equation. J. Eur. Math. Soc. 6(1), 17–94 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Béthuel, F., Saut, J.-C.: Travelling waves for the Gross–Pitaevskii equation. I. Ann. Inst. H. Poincaré Phys. Théor. 70(2), 147–238 (1999)

    MATH  Google Scholar 

  • Boussinesq, J.: Essai sur la théorie des eaux courantes. Mémoires présentés par divers savants à l’académie des sciences de l’institut de France 23 (1877)

  • Brézis, H., Lieb, E.H.: Minimum action solutions for some vector field equations. Commun. Math. Phys. 96, 97–113 (1984)

    Article  MATH  Google Scholar 

  • Cazenave, T., Lions, P.-L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85(4), 549–561 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Chiron, D.: Travelling waves for the Gross–Pitaevskii equation in dimension larger than two. Nonlinear Anal. Theory Methods Appl. 58(1–2), 175–204 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Chiron, D.: Travelling waves for the nonlinear Schrödinger equation with general nonlinearity in dimension one. Nonlinearity 25, 813–850 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Chiron, D.: Stability and instability for subsonic travelling waves of the nonlinear Schrödinger equation in dimension one. Anal. PDE 6(6), 1327–1420 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Chiron, D., Mariş, M.: Travelling waves for the nonlinear Schrödinger equation with nonzero condition at infinity. II, Preprint (2013)

  • Chiron, D., Mariş, M.: Rarefaction pulses for the nonlinear Schrödinger equation in the transonic limit. Commun. Math. Phys. 326(2), 329–392 (2014)

    Article  MATH  Google Scholar 

  • Dalfovo, F.: Structure of vortices in helium at zero temperature. Phys. Rev. B 46(9), 5482–5488 (1992)

    Article  Google Scholar 

  • de Bouard, A.: Instability of stationary bubbles. SIAM J. Math. Anal. 26(3), 566–582 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • de Bouard, A., Saut, J.-C.:. Remarks on the stability of generalized KP solitary waves, Contemp. Math., vol. 200, pp. 75–84. Am. Math. Soc., Providence, RI (1996)

  • de Bouard, A., Saut, J.-C.: Solitary waves of generalized Kadomtsev–Petviashvili equations. Ann. Inst. H. Poincaré Anal. NonLinéaire 14(2), 211–236 (1997)

    Article  MATH  Google Scholar 

  • Di Menza, L.: Numerical computation of solitons for optical systems. Math. Model. Numer. Anal. 43(1), 173–208 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Di Menza, L., Gallo, C.: The black solitons of one-dimensional NLS equations. Nonlinearity 20(2), 461–496 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Gravejat, P.: Asymptotics for the travelling waves in the Gross–Pitaevskii equation. Asymptot. Anal. 45(3–4), 227–299 (2005)

    MathSciNet  MATH  Google Scholar 

  • Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry I. J. Funct. Anal. 74, 160–197 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Jones, C., Putterman, S., Roberts, P.: Motions in a Bosecondensate V. Stability of wave solutions of nonlinearSchrödinger equations in two and three dimensions. J. Phys. A Math. Gen. 19, 2991–3011 (1986)

    Article  Google Scholar 

  • Jones, C., Roberts, P.: Motion in a Bose condensate IV. Axisymmetric solitary waves. J. Phys. A Math. Gen. 15, 2599–2619 (1982)

    Article  Google Scholar 

  • Khaykovich, L., Malomed, B.: Deviation from one dimensionality in stationary properties and collisional dynamics of matter-wave solitons. Phys. Rev. A 74, 023607 (2006)

    Article  Google Scholar 

  • Kivshar, Y., Anderson, D., Lisak, M.: Modulational instabilities and dark solitons in a generalized nonlinear Schrödinger-equation. Phys. Scr. 47, 679–681 (1993)

    Article  Google Scholar 

  • Kivshar, Y., Krolikowski, W.: Instabilities of dark solitons. Opt. Lett. 20(14), 1527–1529 (1995)

    Article  Google Scholar 

  • Kivshar, Y., Luther-Davies, B.: Dark optical solitons: physics and applications. Phys. Rep. 298, 81–197 (1998)

    Article  Google Scholar 

  • Kivshar, Y., Pelinovsky, D.: Self-focusing and transverse instabilities of solitary waves. Phys. Rep. 331, 117–195 (2000)

    Article  MathSciNet  Google Scholar 

  • Kivshar, Y., Yang, X.: Perturbation-induced dynamics of dark solitons. Phys. Rev. E 49, 1657–1670 (1994)

    Article  MathSciNet  Google Scholar 

  • Kolomeisky, E., Newman, T., Straley, J., Qi, X.: Low-dimensional Bose liquids: beyond the Gross–Pitaevskii approximation. Phys. Rev. Lett. 85, 1146–1149 (2000)

    Article  Google Scholar 

  • Lin, Z.: Stability and instability of travelling solitonic bubbles. Adv. Differ. Equ. 7(8), 897–918 (2002)

    MATH  Google Scholar 

  • Lin, Z., Wang, Z., Zeng, C.: Stability of traveling waves of nonlinear Schrödinger equation with nonzero condition at infinity. Preprint

  • Manakov, S., Zakharov, V., Bordag, L., Matveev, V.: Two-dimensional solitons of the Kadomtsev–Petviashvili equation and their interaction. Phys. Lett. A 63, 205–206 (1977)

    Article  Google Scholar 

  • Mariş, M.: Nonexistence of supersonic traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity. SIAM J. Math. Anal. 40(3), 1076–1103 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Mariş, M.: Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity. Ann. Math. 178, 107–182 (2013)

    Article  MATH  Google Scholar 

  • Papanicolaou, N., Spathis, P.: Semitopological solitons in planar ferromagnets. Nonlinearity 12(2), 285–302 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Pelinovsky, D., Stepanyants, Y.: Convergence of Petviashvili’s iteration method for numerical approximation of stationary solutions of nonlinear wave equations. SIAM J. Numer. Anal. 42(3), 1110–1127 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Petviashvili, V.: Equation of an extraordinary soliton. Plasma Phys. 2, 469–472 (1976)

    Google Scholar 

  • Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press. [Harcourt Brace Jovanovich Publishers], New York (1978)

  • Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I. Functional Analysis, 2nd edn. Academic Press. [Harcourt Brace Jovanovich Publishers], New York (1980)

  • Roberts, P., Berloff, N.: Nonlinear Schrödinger Equation as a Model of Superfluid Helium. Lecture Notes in Physics, vol. 571. Springer, Providence, RI (2001)

  • Sinha, S., Cherny, A., Kovrizhin, D., Brand, J.: Friction and diffusion of matter-wave bright solitons. Phys. Rev. Lett. 96, 030406 (2006)

    Article  Google Scholar 

  • Vakhitov, N., Kolokolov, A.: Stationary solutions of the wave equation in a medium with nonlinearity saturation. Radiophys. Quantum Electron. 16(7), 783–789 (1973)

    Article  Google Scholar 

  • Weinstein, Michael I.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16(3), 472–491 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Zakharov, V., Kuznetsov, A.: Multi-scale expansion in the theory of systems integrable by the inverse scattering transform. Phys. D 18(1–3), 455–463 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

D.C. gratefully acknowledges the support of the ANR ArDyPitEq. The authors would like to thank L. Di Menza for having suggested to use the continuation method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Scheid.

Additional information

Communicated by Paul Newton.

Appendix: About Two Diagrams in Dimension One

Appendix: About Two Diagrams in Dimension One

In this appendix, we consider the NLS equation in space dimension one as studied in Chiron (2012). We wish to give two more energy–momentum diagrams showing the variety of possible qualitative behaviours.

1.1 A Quasi-Degenerate Case

We investigate here the quasi-degenerate case

$$\begin{aligned} f_\mathrm{qd} (\varrho ) \mathop {=}\limits ^\mathrm{def} - 2(\varrho - 1) + (3- 10^{-3}) (\varrho - 1)^2 - 4 (\varrho - 1)^3 + 5(\varrho - 1)^4 - 6 (\varrho - 1)^5 , \end{aligned}$$

which is a perturbation of the degenerate case

$$\begin{aligned} f_\mathrm{dege} (\varrho ) \mathop {=}\limits ^\mathrm{def} - 2(\varrho - 1) + 3 (\varrho - 1)^2 - 4 (\varrho - 1)^3 + 5(\varrho - 1)^4 - 6 (\varrho - 1)^5 \end{aligned}$$

studied in Chiron (2012) (Example 4 “a degenerate case” there). For the nonlinearity \( f_\mathrm{dege}\), we have \(\varGamma = \varGamma ' = 0 \) (and also other coefficients of the same type) so that the transonic limit is governed by the sextic gKdV solitary wave equation

$$\begin{aligned} \frac{1}{{\mathfrak {c}}_s^2}\, \partial _z A - \frac{1}{{\mathfrak {c}}_s^2}\, \partial _z^3 A + \varGamma ^{(6)} A^5 \partial _z A = 0 , \end{aligned}$$

which is supercritical. For the nonlinearity \(f_\mathrm{dege}\), as \( c \rightarrow {\mathfrak {c}}_s\), the travelling waves have high energy and momentum (and are unstable; see Chiron (2012, 2013)). For the nonlinearity \(f_\mathrm{qd}\) we are now considering, the coefficient \( \varGamma \) becomes small, but nonzero. Actually, we have

$$\begin{aligned} V_\mathrm{qd} (\varrho ) = (\varrho - 1)^2 - \frac{3- 10^{-3}}{3} (\varrho - 1)^3 + (\varrho - 1)^4 - (\varrho - 1)^5 + (\varrho - 1)^6 \end{aligned}$$

and

$$\begin{aligned} \mathcal {V}_\mathrm{qd}( \xi ) = - \frac{1}{750} \xi ^3 - \frac{1}{750} \xi ^4 - 4 \xi ^7 , \end{aligned}$$

thus \( r_0 = 1 \), \({\mathfrak {c}}_s^2 = 4 \), \( \varGamma = \frac{1}{500} \) and the graphs of \(f_\mathrm{qd}\), \(V_\mathrm{qd}\) and \( \mathcal {V}_\mathrm{qd} \) are given in Fig. 27.

Fig. 27
figure 27

Graphs of a left: \(f_\mathrm{qd}\), b centre: \(V_\mathrm{qd}\) and c right: \( \mathcal {V}_\mathrm{qd}\)

Since \( \varGamma \) is nonzero, the transonic limit for the nonlinearity \(f_\mathrm{qd}\) is governed by the usual KdV solitary wave, and in particular, the energy and momentum tend to zero as \( c \rightarrow {\mathfrak {c}}_s\). However, in some sense, \(f_\mathrm{qd}\) is close to \(f_\mathrm{dege}\), and we hope that for c close, but not too close, to \( {\mathfrak {c}}_s\), part of the behaviour observed for \(f_\mathrm{dege}\) will be seen for \(f_\mathrm{qd}\). In particular, we hope to have, for the nonlinearity \(f_\mathrm{qd}\), some “large” energy and momentum for c close, but not too close, to \( {\mathfrak {c}}_s\), and then for c very close to \({\mathfrak {c}}_s\), small energy and momentum.

Fig. 28
figure 28

a Left energy (*) and momentum (+) versus speed in logarithmic scale; b right qualitative energy–momentum diagram for nonlinearity \( f_\mathrm{qd} \)

The numerical computations of the energy and momentum as in Chiron (2012) provide the diagrams of \(c \mapsto E\) and \(c \mapsto P\) given in Fig. 28a. Since the variations are rather fast, we have used logarithmic scale: the abscissa is not c but \( - \displaystyle { \log \left( \dfrac{{\mathfrak {c}}_s- c}{ {\mathfrak {c}}_s} \right) }= - \log ( 1 - 0.5 c)\). Therefore, the corresponding ( EP) diagram is, qualitatively, as in Fig. 28b. Note that we have indeed some “large” energy and momentum for speeds c with \( - \log ( 1 - 0.5 c) \simeq 10 \) (for which the dominant behaviour is the one of \(f_\mathrm{dege}\)), and finally energy and momentum go to zero since \( \varGamma \not = 0 \). We have been interested in this nonlinearity since the energy–momentum diagram (in dimension one) is qualitatively similar to the one obtained in example 5 for the (exponentially) saturated nonlinearity (in dimension two). As already mentioned, this type of energy–momentum diagram can also be found in Akhmediev et al. (1999), section IV G, for the study of bound states in the nonlinear Schrödinger equation (with zero condition at infinity) with the focusing nonmonotonic nonlinearity \( f (\varrho ) = \varrho ^{5/2} - \varrho ^{5} + \frac{1}{2} \varrho ^{15/2} \). We deal here with travelling waves with a defocusing monotonic nonlinearity.

Fig. 29
figure 29

Graphs of a \(f_\mathrm{sat}\), b \(V_\mathrm{sat}\) and c \(\mathcal {V}_\mathrm{sat} \)

Fig. 30
figure 30

a Left 40 \(\times \) energy (*) and momentum (+) versus speed; b right energy–momentum diagram for nonlinearity \(f_\mathrm{sat}\)

1.2 Another Saturated NLS Model

We investigate now another classical saturated NLS model, which is

$$\begin{aligned} f_\mathrm{sat} (\varrho ) \mathop {=}\limits ^\mathrm{def} \frac{\varrho _0}{2} \Big ( \frac{1}{(1+\varrho /\varrho _0)^2} - \frac{1}{(1+1/\varrho _0)^2} \Big ) , \end{aligned}$$

where \( \varrho _0 > 0 \) is some parameter. For this nonlinearity, there holds

$$\begin{aligned} V_\mathrm{sat} (\varrho ) = \displaystyle { \frac{(\varrho - 1)^2}{ 2 \Big ( 1+ \displaystyle { \frac{1}{\varrho _0} } \Big )^2 \Big ( 1+ \displaystyle { \frac{\varrho }{\varrho _0} } \Big )} } \quad \mathrm{and} \quad \mathcal {V}_\mathrm{sat}(\xi ) = - \frac{ 2 \xi ^3 }{ \Big ( 1+ \displaystyle { \frac{1}{\varrho _0}} \Big )^3 \Big ( 1+ \displaystyle { \frac{1+\xi }{\varrho _0}} \Big )}. \end{aligned}$$

This nonlinearity has been studied in Kivshar and Krolikowski (1995) and is an example where the “kink”, that is the stationary wave (\(c=0\)), is unstable if \( \varrho _0 \) is small enough. This instability has also been theoretically and numerically studied in Di Menza and Gallo (2007), where the instability threshold was shown to be \( \varrho _0 \simeq 0.134 \). However, we would like to point out that the energy–momentum diagram given in Kivshar and Krolikowski (1995) for \( 0.08 = \hbox {``}I_0\hbox {''} = \varrho _0 < 0.134 \) (Fig. 1 there) is probably not correct. Indeed, the slope of the curve \(P\mapsto E\) must be equal to the speed c in view of the Hamilton group relation (20) (which holds true in dimension one, see Chiron (2012)). Hence, there should not exist a point on the curve \( c \mapsto (E,P)\) with vertical tangent as given in Kivshar and Krolikowski (1995, figure 1). We have performed the corresponding simulation as in Chiron (2012).

We shall take \(\varrho _0 = 0.08 < 0.134 \); thus, \(r_0=1\), \({\mathfrak {c}}_s^2 = 2 ( 1 + 1 / \varrho _0)^{-3} \simeq 0.00081288 \), \(\varGamma = \frac{6 \varrho _0}{\varrho _0 + 1 } = \frac{4}{9} \simeq 0.4444\ldots \). The graphs of \(f_\mathrm{sat}\), \(V_\mathrm{sat}\) and \(\mathcal {V}_\mathrm{sat}\) are given in Fig. 29. We have computed E and P as the speed c varies, as shown in Fig. 30a, as well as the energy–momentum diagram, as shown in Fig. 30b. As we see, the curve possesses a cusp. We see with this example that the energy–momentum diagram may exhibit a cusp with a (local) maximum of E and P even though the nonlinearity \(f_\mathrm{sat}\) is increasing. For the cubic–quintic nonlinearity, we also have a cusp with a (local) maximum of E and P, but the nonlinearity is increasing near 0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiron, D., Scheid, C. Travelling Waves for the Nonlinear Schrödinger Equation with General Nonlinearity in Dimension Two. J Nonlinear Sci 26, 171–231 (2016). https://doi.org/10.1007/s00332-015-9273-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-015-9273-6

Keywords

Mathematics Subject Classification

Navigation