Skip to main content

Advertisement

Log in

PET radiotracers for whole-body in vivo molecular imaging of prostatic neuroendocrine malignancies

  • Review
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Prostatic neuroendocrine malignancies represent a spectrum of diseases. Treatment-induced neuroendocrine differentiation (tiNED) in hormonally treated adenocarcinoma has been the subject of a large amount of recent research. However, the identification of neuroendocrine features in treatment-naïve prostatic tumor raises a differential diagnosis between prostatic adenocarcinoma with de novo neuroendocrine differentiation (dNED) versus one of the primary prostatic neuroendocrine tumors (P-NETs) and carcinomas (P-NECs). While [18F]FDG is being used as the main PET radiotracer in oncologic imaging and reflects cellular glucose metabolism, other molecules labeled with positron-emitting isotopes, mainly somatostatin-analogues labeled with 68Ga and prostate-specific membrane antigen (PSMA)-ligands labeled with either 18F or 68Ga, are now routinely used in departments of nuclear medicine and molecular imaging, and may be advantageous in imaging prostatic neuroendocrine malignancies. Still, the selection of the preferred PET radiotracer in such cases might be challenging. In the current review, we summarize and discuss published data on these different entities from clinical, biological, and molecular imaging standpoints. Specifically, we review the roles that [18F]FDG, radiolabeled somatostatin-analogues, and radiolabeled PSMA-ligands play in these entities in order to provide the reader with practical recommendations regarding the preferred PET radiotracers for imaging each entity. In cases of tiNED, we conclude that PSMA expression may be low and that [18F]FDG or radiolabeled somatostatin-analogues should be preferred for imaging. In cases of prostatic adenocarcinoma with dNED, we present data that support the superiority of radiolabeled PSMA-ligands. In cases of primary neuroendocrine malignancies, the use of [18F]FDG for imaging high-grade P-NECs and radiolabeled somatostatin-analogues for imaging well-differentiated P-NETs is recommended.

Key Points

• The preferred PET radiotracer for imaging prostatic neuroendocrine malignancies depends on the specific clinical scenario and pathologic data.

• When neuroendocrine features result from hormonal therapy for prostate cancer, PET-CT should be performed with [ 18 F]FDG or radiolabeled somatostatin-analogue rather than with radiolabeled PSMA-ligand.

• When neuroendocrine features are evident in newly diagnosed prostate cancer, differentiating adenocarcinoma from primary neuroendocrine malignancy is challenging but crucial for selection of PET radiotracer and for clinical management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

[18F]FDG:

18F-Fluorodeoxyglucose

ADT:

Androgen-deprivation therapy

CRPC:

Castration-resistant prostate cancer

dNED:

De novo neuroendocrine differentiation

DOTATATE:

Dodecane tetraacetic acid-octreotate

H&E:

Hematoxylin and eosin

MIP:

Maximal intensity projection

PET-CT:

Positron emission tomography–computed tomography

P-NEC:

Primary prostatic neuroendocrine carcinoma

P-NET:

Primary prostatic neuroendocrine tumor

PSA:

Prostate-specific antigen

PSMA:

Prostate-specific membrane antigen

SSTR:

Somatostatin-receptor

tiNED:

Treatment-induced neuroendocrine differentiation

TURBT:

Transurethral resection of bladder tumor

TURP:

Transurethral resection of prostate

References

  1. American Cancer Society. Cancer facts & figures 2022. Available at https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2022.html. Accessed: September 7, 2022

  2. Shah RB, Zhou M. Histologic variants of acinar adenocarcinoma, ductal adenocarcinoma, neuroendocrine tumors, and other carcinomas. In: Prostate Biopsy Interpretation 2019 (pp. 69–95). Springer, Cham

  3. Humphrey PA, Moch H, Cubilla AL, Ulbright TM, Reuter VE (2016) The 2016 WHO classification of tumours of the urinary system and male genital organs—part B: prostate and bladder tumours. Eur Urol 70(1):106–119

    Article  PubMed  Google Scholar 

  4. Parker C, Castro E, Fizazi K et al (2020) Prostate cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 31(9):1119–1134

    Article  CAS  PubMed  Google Scholar 

  5. Uo T, Sprenger CC, Plymate SR (2020) Androgen receptor signaling and metabolic and cellular plasticity during progression to castration resistant prostate cancer. Front Oncol. 10:580617. https://doi.org/10.3389/fonc.2020.580617

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ge R, Wang Z, Cheng L (2022) Tumor microenvironment heterogeneity an important mediator of prostate cancer progression and therapeutic resistance. NPJ Precis Oncol. 6(1):31. https://doi.org/10.1038/s41698-022-00272-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Merkens L, Sailer V, Lessel D et al (2022) Aggressive variants of prostate cancer: underlying mechanisms of neuroendocrine transdifferentiation. J Exp Clin Cancer Res. 41(1):46. https://doi.org/10.1186/s13046-022-02255-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Parimi V, Goyal R, Poropatich K, Yang XJ (2014) Neuroendocrine differentiation of prostate cancer: a review. Am J Clin Exp Urol. 2(4):273–85

    PubMed  PubMed Central  Google Scholar 

  9. Priemer DS, Montironi R, Wang L, Williamson SR, Lopez-Beltran A, Cheng L (2016) Neuroendocrine tumors of the prostate: emerging insights from molecular data and updates to the 2016 World Health Organization Classification. Endocr Pathol 27(2):123–135. https://doi.org/10.1007/s12022-016-9421-z

    Article  CAS  PubMed  Google Scholar 

  10. Fine SW (2018) Neuroendocrine tumors of the prostate. Mod Pathol 31(S1):122–132. https://doi.org/10.1038/modpathol.2017.164

    Article  Google Scholar 

  11. Bar-Shalom R, Yefremov N, Guralnik L et al (2003) Clinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient management. J Nucl Med 44(8):1200–1209

    PubMed  Google Scholar 

  12. Beyer T, Townsend DW, Brun T et al (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41(8):1369–1379

    CAS  PubMed  Google Scholar 

  13. Salminen E, Hogg A, Binns D, Frydenberg M, Hicks R (2002) Investigations with FDG-PET scanning in prostate cancer show limited value for clinical practice. Acta Oncol 41(5):425–429. https://doi.org/10.1080/028418602320405005

    Article  PubMed  Google Scholar 

  14. Jadvar H (2013) Imaging evaluation of prostate cancer with 18F-fluorodeoxyglucose PET/CT: utility and limitations. Eur J Nucl Med Mol Imaging. 40(01):5–10. https://doi.org/10.1007/s00259-013-2361-7

    Article  CAS  PubMed Central  Google Scholar 

  15. Kayani I, Bomanji JB, Groves A et al (2008) Functional imaging of neuroendocrine tumors with combined PET/CT using 68Ga-DOTATATE (DOTA-DPhe1, Tyr3-octreotate) and 18F-FDG. Cancer 112(11):2447–2455. https://doi.org/10.1002/cncr.23469

    Article  PubMed  Google Scholar 

  16. Panagiotidis E, Alshammari A, Michopoulou S et al (2017) Comparison of the impact of 68Ga-DOTATATE and 18F-FDG PET/CT on clinical management in patients with neuroendocrine tumors. J Nucl Med 58(1):91–96. https://doi.org/10.2967/jnumed.116.178095

    Article  PubMed  Google Scholar 

  17. Hofman MS, Lau WF, Hicks RJ (2015) Somatostatin receptor imaging with 68Ga DOTATATE PET/CT: clinical utility, normal patterns, pearls, and pitfalls in interpretation. Radiographics 35(2):500–516. https://doi.org/10.1148/rg.352140164

    Article  PubMed  Google Scholar 

  18. Shaygan B, Zukotynski K, Bénard F et al (2021) Canadian Urological Association best practice report: prostate-specific membrane antigen positron emission tomography/computed tomography (PSMA PET/CT) and PET/magnetic resonance (MR) in prostate [published correction appears in Can Urol Assoc J. 2021 Aug;15(8):E423]. Can Urol Assoc J. 15(6):162–172. https://doi.org/10.5489/cuaj.7268

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hofman MS, Hicks RJ, Maurer T, Eiber M (2018) Prostate-specific membrane antigen PET: clinical utility in prostate cancer, normal patterns, pearls, and pitfalls. Radiographics 38(1):200–217. https://doi.org/10.1148/rg.2018170108

    Article  PubMed  Google Scholar 

  20. Huggins C, Hodges CV (2002) Studies on prostatic cancer. I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. 1941. J Urol. 167(2 Pt 2):948–52

    Article  CAS  PubMed  Google Scholar 

  21. Labrie F, Dupont A, Belanger A et al (1982) New hormonal therapy in prostatic carcinoma: combined treatment with an LHRH agonist and an antiandrogen. Clin Invest Med 5(4):267–275

    CAS  PubMed  Google Scholar 

  22. Crawford ED, Eisenberger MA, McLeod DG et al (1989) A controlled trial of leuprolide with and without flutamide in prostatic carcinoma [published correction appears in N Engl J Med 1989 Nov 16;321(20):1420]. N Engl J Med 321(7):419–424. https://doi.org/10.1056/NEJM198908173210702

    Article  CAS  PubMed  Google Scholar 

  23. Bungaro M, Buttigliero C, Tucci M (2020) Overcoming the mechanisms of primary and acquired resistance to new generation hormonal therapies in advanced prostate cancer: focus on androgen receptor independent pathways. Cancer Drug Resist. 3(4):726–41. https://doi.org/10.20517/cdr.2020.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Beltran H, Rickman DS, Park K et al (2011) Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov 1(6):487–495. https://doi.org/10.1158/2159-8290.CD-11-0130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Terry S, Beltran H (2014) The many faces of neuroendocrine differentiation in prostate cancer progression. Front Oncol. 4:60. https://doi.org/10.3389/fonc.2014.00060

    Article  PubMed  PubMed Central  Google Scholar 

  26. Scher HI, Halabi S, Tannock I et al (2008) Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J Clin Oncol 26(7):1148–1159. https://doi.org/10.1200/JCO.2007.12.4487

    Article  PubMed  Google Scholar 

  27. Morote J, Aguilar A, Planas J, Trilla E (2022) Definition of castrate resistant prostate cancer: new insights. Biomedicines. 10(3):689. https://doi.org/10.3390/biomedicines10030689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yamada Y, Beltran H (2021) Clinical and biological features of neuroendocrine prostate cancer. Curr Oncol Rep. 23(2):15. https://doi.org/10.1007/s11912-020-01003-9

    Article  PubMed  PubMed Central  Google Scholar 

  29. Conteduca V, Scarpi E, Salvi S et al (2018) Plasma androgen receptor and serum chromogranin A in advanced prostate cancer. Sci Rep. 8(1):15442. https://doi.org/10.1038/s41598-018-33774-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Szarvas T, Csizmarik A, Fazekas T et al (2021) Comprehensive analysis of serum chromogranin A and neuron-specific enolase levels in localized and castration-resistant prostate cancer. BJU Int 127(1):44–55. https://doi.org/10.1111/bju.15086

    Article  CAS  PubMed  Google Scholar 

  31. Akamatsu S, Inoue T, Ogawa O, Gleave ME (2018) Clinical and molecular features of treatment-related neuroendocrine prostate cancer. Int J Urol 25(4):345–351. https://doi.org/10.1111/iju.13526

    Article  CAS  PubMed  Google Scholar 

  32. Alanee S, Moore A, Nutt M et al (2015) Contemporary incidence and mortality rates of neuroendocrine prostate cancer. Anticancer Res 35(7):4145–4150

    PubMed  Google Scholar 

  33. Sartor O, De Bono J, Chi KN  et al (2021) Lutetium-177–PSMA-617 for metastatic castration-resistant prostate cancer. N Engl J Med 385(12):1091–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hofman MS, Lawrentschuk N, Francis RJ et al (2020) Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet 395(10231):1208–1216

    Article  CAS  PubMed  Google Scholar 

  35. Fendler WP, Calais J, Eiber M et al (2019) Assessment of 68Ga-PSMA-11 PET accuracy in localizing recurrent prostate cancer: a prospective single-arm clinical trial. JAMA Oncol 5(6):856–863. https://doi.org/10.1001/jamaoncol.2019.0096

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hope TA, Goodman JZ, Allen IE, Calais J, Fendler WP, Carroll PR (2019) Metaanalysis of 68Ga-PSMA-11 PET accuracy for the detection of prostate cancer validated by histopathology. J Nucl Med 60(6):786–793. https://doi.org/10.2967/jnumed.118.219501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Perera M, Papa N, Roberts M et al (2020) Gallium-68 prostate-specific membrane antigen positron emission tomography in advanced prostate cancer-updated diagnostic utility, sensitivity, specificity, and distribution of prostate-specific membrane antigen-avid lesions: a systematic review and meta-analysis. Eur Urol 77(4):403–417. https://doi.org/10.1016/j.eururo.2019.01.049

    Article  PubMed  Google Scholar 

  38. Lengana T, Lawal IO, Boshomane TG et al (2018) 68Ga-PSMA PET/CT replacing bone scan in the initial staging of skeletal metastasis in prostate cancer: a fait accompli? Clin Genitourin Cancer 16(5):392–401. https://doi.org/10.1016/j.clgc.2018.07.009

    Article  PubMed  Google Scholar 

  39. Zhou X, Li Y, Jiang X et al (2021) Intra-individual comparison of 18F-PSMA-1007 and 18F-FDG PET/CT in the evaluation of patients with prostate cancer. Front Oncol. 10:585213. https://doi.org/10.3389/fonc.2020.585213

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wallitt KL, Khan SR, Dubash S, Tam HH, Khan S, Barwick TD (2017) Clinical PET imaging in prostate cancer. Radiographics 37(5):1512–1536. https://doi.org/10.1148/rg.2017170035

    Article  PubMed  Google Scholar 

  41. Luboldt W, Zöphel K, Wunderlich G, Abramyuk A, Luboldt HJ, Kotzerke J (2010) Visualization of somatostatin receptors in prostate cancer and its bone metastases with Ga-68-DOTATOC PET/CT. Mol Imaging Biol 12(1):78–84. https://doi.org/10.1007/s11307-009-0230-3

    Article  PubMed  Google Scholar 

  42. Bakht MK, Derecichei I, Li Y et al (2018) Neuroendocrine differentiation of prostate cancer leads to PSMA suppression. Endocr Relat Cancer. 26(2):131–46. https://doi.org/10.1530/ERC-18-0226

    Article  PubMed  Google Scholar 

  43. Parida GK, Tripathy S, Datta Gupta S et al (2018) Adenocarcinoma prostate with neuroendocrine differentiation: potential utility of 18F-FDG PET/CT and 68Ga-DOTANOC PET/CT over 68Ga-PSMA PET/CT. Clin Nucl Med 43(4):248–249. https://doi.org/10.1097/RLU.0000000000002013

    Article  PubMed  Google Scholar 

  44. Vargas Ahumada J, González Rueda SD, Sinisterra Solís FA et al (2022) Multitarget molecular imaging in metastatic castration resistant adenocarcinoma prostate cancer with therapy induced neuroendocrine differentiation. Diagnostics (Basel). 12(6):1387. https://doi.org/10.3390/diagnostics12061387

    Article  PubMed  PubMed Central  Google Scholar 

  45. Spratt DE, Gavane S, Tarlinton L et al (2014) Utility of FDG-PET in clinical neuroendocrine prostate cancer. Prostate 74(11):1153–1159. https://doi.org/10.1002/pros.22831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu Y (2008) FDG PET-CT demonstration of metastatic neuroendocrine tumor of prostate. World J Surg Oncol. 6:64. https://doi.org/10.1186/1477-7819-6-64

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rosar F, Ribbat K, Ries M et al (2020) Neuron-specific enolase has potential value as a biomarker for [18F]FDG/[68Ga]Ga-PSMA-11 PET mismatch findings in advanced mCRPC patients. EJNMMI Res. 10(1):52. https://doi.org/10.1186/s13550-020-00640-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shen K, Liu B, Zhou X et al (2021) The evolving role of 18F-FDG PET/CT in diagnosis and prognosis prediction in progressive prostate cancer. Front Oncol. 11:683793. https://doi.org/10.3389/fonc.2021.683793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Savelli G, Muni A, Falchi R et al (2015) Somatostatin receptors over-expression in castration resistant prostate cancer detected by PET/CT: preliminary report of in six patients. Ann Transl Med 3(10):145. https://doi.org/10.3978/j.issn.2305-5839.2015.06.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gofrit ON, Frank S, Meirovitz A, Nechushtan H, Orevi M (2017) PET/CT With 68Ga-DOTA-TATE for diagnosis of neuroendocrine: differentiation in patients with castrate-resistant prostate cancer. Clin Nucl Med 42(1):1–6. https://doi.org/10.1097/RLU.0000000000001424

    Article  PubMed  Google Scholar 

  51. Savelli G, Muni A, Barbieri R et al (2014) Neuroendocrine differentiation of prostate cancer metastases evidenced “in Vivo” by 68Ga-DOTANOC PET/CT: two cases. World J Oncol 5(2):72–76. https://doi.org/10.14740/wjon739w

    Article  PubMed  PubMed Central  Google Scholar 

  52. Usmani S, Ahmed N, Marafi F, Rasheed R, Amanguno HG, Al KF (2017) Molecular imaging in neuroendocrine differentiation of prostate cancer: 68Ga-PSMA versus 68Ga-DOTA NOC PET-CT. Clin Nucl Med 42(5):410–413. https://doi.org/10.1097/RLU.0000000000001618

    Article  PubMed  Google Scholar 

  53. Hu J, Han B, Huang J (2020) Morphologic spectrum of neuroendocrine tumors of the prostate: an updated review. Arch Pathol Lab Med 144(3):320–325. https://doi.org/10.5858/arpa.2019-0434-RA

    Article  CAS  PubMed  Google Scholar 

  54. Epstein JI, Amin MB, Beltran H et al (2014) Proposed morphologic classification of prostate cancer with neuroendocrine differentiation. Am J Surg Pathol 38(6):756–767. https://doi.org/10.1097/PAS.0000000000000208

    Article  PubMed  PubMed Central  Google Scholar 

  55. Abrahamsson PA (1999) Neuroendocrine differentiation in prostatic carcinoma. Prostate 39(2):135–148. https://doi.org/10.1002/(sici)1097-0045(19990501)39:2%3c135::aid-pros9%3e3.0.co;2-s

    Article  CAS  PubMed  Google Scholar 

  56. Vashchenko N, Abrahamsson PA (2005) Neuroendocrine differentiation in prostate cancer: implications for new treatment modalities. Eur Urol 47(2):147–155. https://doi.org/10.1016/j.eururo.2004.09.007

    Article  CAS  PubMed  Google Scholar 

  57. Mucci NR, Akdas G, Manely S, Rubin MA (2000) Neuroendocrine expression in metastatic prostate cancer: evaluation of high throughput tissue microarrays to detect heterogeneous protein expression [published correction appears in Hum Pathol 2000 Jun; 31(6):778]. Hum Pathol 31(4):406–414. https://doi.org/10.1053/hp.2000.7295

    Article  CAS  PubMed  Google Scholar 

  58. Casella R, Bubendorf L, Sauter G, Moch H, Mihatsch MJ, Gasser TC (1998) Focal neuroendocrine differentiation lacks prognostic significance in prostate core needle biopsies. J Urol 160(2):406–410

    Article  CAS  PubMed  Google Scholar 

  59. Allen FJ, Van Velden DJ, Heyns CF (1995) Are neuroendocrine cells of practical value as an independent prognostic parameter in prostate cancer? Br J Urol 75(6):751–754. https://doi.org/10.1111/j.1464-410x.1995.tb07385.x

    Article  CAS  PubMed  Google Scholar 

  60. Tan MO, Karaoğlan U, Celik B, Ataoğlu O, Biri H, Bozkirli I (1999) Prostate cancer and neuroendocrine differentiation. Int Urol Nephrol 31(1):75–82. https://doi.org/10.1023/a:1007175924082

    Article  CAS  PubMed  Google Scholar 

  61. McClintock J, Speights VO Jr (1994) Neuroendocrine differentiation in prostatic adenocarcinoma and its relationship to tumor progression. Cancer 74(7):1899–1903. https://doi.org/10.1002/1097-0142(19941001)74:7%3c1899::aid-cncr2820740712%3e3.0.co;2-u

    Article  PubMed  Google Scholar 

  62. Jeetle SS, Fisher G, Yang ZH et al (2012) Neuroendocrine differentiation does not have independent prognostic value in conservatively treated prostate cancer. Virchows Arch 461(2):103–107. https://doi.org/10.1007/s00428-012-1259-2

    Article  CAS  PubMed  Google Scholar 

  63. Abrahamsson PA, Cockett AT, di Sant’Agnese PA (1998) Prognostic significance of neuroendocrine differentiation in clinically localized prostatic carcinoma. Prostate Suppl 8:37–42

    Article  CAS  PubMed  Google Scholar 

  64. Berchuck JE, Viscuse PV, Beltran H, Aparicio A (2021) Clinical considerations for the management of androgen indifferent prostate cancer. Prostate Cancer Prostatic Dis 24(3):623–637. https://doi.org/10.1038/s41391-021-00332-5

    Article  PubMed  PubMed Central  Google Scholar 

  65. Deorah S, Rao MB, Raman R, Gaitonde K, Donovan JF (2012) Survival of patients with small cell carcinoma of the prostate during 1973–2003: a population-based study. BJU Int 109(6):824–830. https://doi.org/10.1111/j.1464-410X.2011.10523.x

    Article  PubMed  Google Scholar 

  66. Marcus DM, Goodman M, Jani AB, Osunkoya AO, Rossi PJ (2012) A comprehensive review of incidence and survival in patients with rare histological variants of prostate cancer in the United States from 1973 to 2008. Prostate Cancer Prostatic Dis 15(3):283–288. https://doi.org/10.1038/pcan.2012.4

    Article  CAS  PubMed  Google Scholar 

  67. Wang W, Epstein JI (2008) Small cell carcinoma of the prostate. A morphologic and immunohistochemical study of 95 cases. Am J Surg Pathol. 32(1):65–71. https://doi.org/10.1097/PAS.0b013e318058a96b

    Article  PubMed  Google Scholar 

  68. Furtado P, Lima MV, Nogueira C, Franco M, Tavora F (2011) Review of small cell carcinomas of the prostate. Prostate Cancer. 2011:543272. https://doi.org/10.1155/2011/543272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Findakly D, Wang J (2020) Misdiagnosis of small cell prostate cancer: lessons learned. Cureus. 12(5):e8356. https://doi.org/10.7759/cureus.8356

    Article  PubMed  PubMed Central  Google Scholar 

  70. Simon RA, di Sant’Agnese PA, Huang LS et al (2009) CD44 expression is a feature of prostatic small cell carcinoma and distinguishes it from its mimickers. Hum Pathol 40(2):252–258. https://doi.org/10.1016/j.humpath.2008.07.014

    Article  CAS  PubMed  Google Scholar 

  71. Bradley JD, Dehdashti F, Mintun MA, Govindan R, Trinkaus K, Siegel BA (2004) Positron emission tomography in limited-stage small-cell lung cancer: a prospective study. J Clin Oncol 22(16):3248–3254. https://doi.org/10.1200/JCO.2004.11.089

    Article  PubMed  Google Scholar 

  72. Binderup T, Knigge U, Loft A, Federspiel B, Kjaer A (2010) 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin Cancer Res 16(3):978–985. https://doi.org/10.1158/1078-0432.CCR-09-1759

    Article  CAS  PubMed  Google Scholar 

  73. Sleiman W, Karray O, Abi Abdallah M et al (2021) Large-cell neuroendocrine tumor of the prostate: a case report and review of the literature. J Med Case Rep. 15(1):254. https://doi.org/10.1186/s13256-021-02830-5

    Article  PubMed  PubMed Central  Google Scholar 

  74. Tu X, Chang T, Nie L et al (2019) Large cell neuroendocrine carcinoma of the prostate: a systematic review and pooled analysis. Urol Int 103(4):383–390. https://doi.org/10.1159/000499883

    Article  PubMed  Google Scholar 

  75. Evans AJ, Humphrey PA, Belani J, van der Kwast TH, Srigley JR (2006) Large cell neuroendocrine carcinoma of prostate: a clinicopathologic summary of 7 cases of a rare manifestation of advanced prostate cancer. Am J Surg Pathol 30(6):684–693. https://doi.org/10.1097/00000478-200606000-00003

    Article  PubMed  Google Scholar 

  76. Humphrey PA (2012) Histological variants of prostatic carcinoma and their significance. Histopathology 60(1):59–74. https://doi.org/10.1111/j.1365-2559.2011.04039.x

    Article  PubMed  Google Scholar 

  77. Goulet-Salmon B, Berthe E, Franc S et al (2004) Prostatic neuroendocrine tumor in multiple endocrine neoplasia Type 2B. J Endocrinol Invest 27(6):570–573. https://doi.org/10.1007/BF03347481

    Article  CAS  PubMed  Google Scholar 

  78. Whelan T, Gatfield CT, Robertson S, Carpenter B, Schillinger JF (1995) Primary carcinoid of the prostate in conjunction with multiple endocrine neoplasia IIb in a child. J Urol 153(3 Pt 2):1080–1082

    CAS  PubMed  Google Scholar 

  79. Fanti S, Ambrosini V, Tomassetti P et al (2008) Evaluation of unusual neuroendocrine tumours by means of 68Ga-DOTA-NOC PET. Biomed Pharmacother 62(10):667–671. https://doi.org/10.1016/j.biopha.2008.01.010

    Article  CAS  PubMed  Google Scholar 

  80. Ambrosini V, Nanni C, Zompatori M et al (2010) (68)Ga-DOTA-NOC PET/CT in comparison with CT for the detection of bone metastasis in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 37(4):722–727. https://doi.org/10.1007/s00259-009-1349-9

    Article  PubMed  Google Scholar 

  81. Gabriel M, Decristoforo C, Kendler D et al (2007) 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 48(4):508–518. https://doi.org/10.2967/jnumed.106.035667

    Article  CAS  PubMed  Google Scholar 

  82. Putzer D, Gabriel M, Henninger B et al (2009) Bone metastases in patients with neuroendocrine tumor: 68Ga-DOTA-Tyr3-octreotide PET in comparison to CT and bone scintigraphy. J Nucl Med 50(8):1214–1221. https://doi.org/10.2967/jnumed.108.060236

    Article  PubMed  Google Scholar 

  83. Strosberg JR, Caplin ME, Kunz PL  et al (2021) 177Lu-Dotatate plus long-acting octreotide versus high-dose long-acting octreotide in patients with midgut neuroendocrine tumours (NETTER-1): final overall survival and long-term safety results from an open-label, randomised, controlled, phase 3 trial. Lancet Oncol 22(12):1752–1763. https://doi.org/10.1016/S1470-2045(21)00572-6

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Cohen.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Einat Even-Sapir.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Data presented in the figures included in this paper were available as part of retrospective study protocols approved by the local institutional ethics committee, which waived written informed consent (Reference ID 0487/1102–20-TLV).

Methodology

• Narrative review

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cohen, D., Hazut Krauthammer, S., Fahoum, I. et al. PET radiotracers for whole-body in vivo molecular imaging of prostatic neuroendocrine malignancies. Eur Radiol 33, 6502–6512 (2023). https://doi.org/10.1007/s00330-023-09619-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-023-09619-8

Keywords

Navigation