Skip to main content
Log in

Regional age-related changes of neuromelanin and iron in the substantia nigra based on neuromelanin accumulation and iron deposition

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To investigate age-related neuromelanin signal variation and iron content changes in the subregions of substantia nigra (SN) using magnetization transfer contrast neuromelanin-sensitive multi-echo fast field echo sequence in a normal population.

Methods

In this prospective study, 115 healthy volunteers between 20 and 86 years of age were recruited and scanned using 3.0-T MRI. We manually delineated neuromelanin accumulation and iron deposition regions in neuromelanin image and quantitative susceptibility mapping, respectively. We calculated the overlap region using the two measurements mentioned above. Partial correlation analysis was used to evaluate the correlations between volume, contrast ratio (CR), susceptibility of three subregions of SN, and age. Curve estimation models were used to find the best regression model.

Results

CR increased with age (r = 0.379, p < 0.001; r = 0.371, p < 0.001), while volume showed an age-related decline (r =  −0.559, p < 0.001; r =  −0.410, p < 0.001) in the neuromelanin accumulation and overlap regions. Cubic polynomial regression analysis found a small increase in neuromelanin accumulation volume with age until 34, followed by a significant decrease until the 80 s (R2 = 0.358, p < 0.001). No significant correlations were found between susceptibility and age in any subregion. No correlation was found between CR and susceptibility in the overlap region.

Conclusions

Our results indicated that CR increased with age, while volume showed an age-related decline in the overlap region. We further found that the neuromelanin accumulation region volume increased until the 30 s and decreased into the 80 s. This study may provide a reference for future neurodegenerative elucidations of substantia nigra.

Key Points

• Our results define the regional changes in neuromelanin and iron in the substantia nigra with age in the normal population, especially in the overlap region.

• The contrast ratio increased with age in the neuromelanin accumulation and overlap regions, and volume showed an age-related decline, while contrast ratio and volume do not affect each other indirectly.

• The contrast ratio of hyperintense neuromelanin in the overlap region was unaffected by iron content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

CR:

Contrast ratio

FFE:

Fast field echo

FOV:

Field of view

MTC:

Magnetization transfer contrast

NM:

Neuromelanin

NM-MRI:

Neuromelanin-sensitive magnetic resonance imaging

PD:

Parkinson’s disease

QSM:

Quantitative susceptibility mapping

ROI:

Regions of interest

SI:

Signal intensity

SN:

Substantia nigra

SNpc:

Substantia nigra pars compacta

SNr:

Substantia nigra pars reticulata

TE:

Echo time

TR:

Repetition time

XSCP:

Decussation of the superior cerebellar peduncle

References

  1. Nieoullon A (2002) Dopamine and the regulation of cognition and attention. Prog Neurobiol 67:53–83. https://doi.org/10.1016/S0301-0082(02)00011-4

    Article  CAS  PubMed  Google Scholar 

  2. Liu C, Kaeser PS (2019) Mechanisms and regulation of dopamine release. Curr Opin Neurobiol 57:46–53. https://doi.org/10.1016/j.conb.2019.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fedorow H, Tribl F, Halliday G et al (2005) Neuromelanin in human dopamine neurons: comparison with peripheral melanins and relevance to Parkinson’s disease. Prog Neurobiol 75:109–124. https://doi.org/10.1016/j.pneurobio.2005.02.001

    Article  CAS  PubMed  Google Scholar 

  4. Chinta SJ, Andersen JK (2005) Dopaminergic neurons. Int J Biochem Cell Biol 37:942–946. https://doi.org/10.1016/j.biocel.2004.09.009

    Article  CAS  PubMed  Google Scholar 

  5. Lehéricy S, Bardinet E, Poupon C et al (2014) 7 tesla magnetic resonance imaging: a closer look at substantia nigra anatomy in Parkinson’s disease: 7T MRI in PD. Mov Disord 29:1574–1581. https://doi.org/10.1002/mds.26043

    Article  CAS  PubMed  Google Scholar 

  6. Cassidy CM, Zucca FA, Girgis RR et al (2019) Neuromelanin-sensitive MRI as a noninvasive proxy measure of dopamine function in the human brain. Proc Natl Acad Sci U S A 116:5108–5117. https://doi.org/10.1073/pnas.1807983116

  7. Sasaki M, Shibata E, Tohyama K et al (2006) Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson’s disease. Neuroreport 17:1215–1218. https://doi.org/10.1097/01.wnr.0000227984.84927.a7

  8. Schwarz ST, Rittman T, Gontu V et al (2011) T1-Weighted MRI shows stage-dependent substantia nigra signal loss in Parkinson’s disease: substantia Nigra T1 Signal Loss In PD. Mov Disord 26:1633–1638. https://doi.org/10.1002/mds.23722

  9. Castellanos G, Fernández-Seara MA, Lorenzo-Betancor O et al (2015) Automated neuromelanin imaging as a diagnostic biomarker for Parkinson’s disease: automated neuromelanin image for PD. Mov Disord 30:945–952. https://doi.org/10.1002/mds.26201

    Article  PubMed  Google Scholar 

  10. Fabbri M, Reimão S, Carvalho M et al (2017) Substantia Nigra neuromelanin as an imaging biomarker of disease progression in Parkinson’s disease. J Park Dis 7:491–501. https://doi.org/10.3233/JPD-171135

    Article  CAS  Google Scholar 

  11. Vitali P, Pan MI, Palesi F et al (2020) Substantia nigra volumetry with 3-T MRI in de novo and advanced Parkinson disease. Radiology 296:401–410. https://doi.org/10.1148/radiol.2020191235

    Article  PubMed  Google Scholar 

  12. Gaurav R, Yahia-Cherif L, Pyatigorskaya N et al (2021) Longitudinal changes in neuromelanin MRI signal in Parkinson’s disease: a progression marker. Mov Disord 36:1592–1602. https://doi.org/10.1002/mds.28531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Leitão R, Guerreiro C, Nunes RG et al (2020) Neuromelanin magnetic resonance imaging of the substantia nigra in Huntington’s disease. J Huntingt Dis 9:143–148. https://doi.org/10.3233/JHD-190388

    Article  Google Scholar 

  14. Williams DR, Lees AJ (2009) Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges. Lancet Neurol 8:270–279. https://doi.org/10.1016/S1474-4422(09)70042-0

    Article  PubMed  Google Scholar 

  15. Koga S, Dickson DW (2018) Recent advances in neuropathology, biomarkers and therapeutic approach of multiple system atrophy. J Neurol Neurosurg Psychiatry 89:175–184. https://doi.org/10.1136/jnnp-2017-315813

    Article  PubMed  Google Scholar 

  16. Taniguchi D, Hatano T, Kamagata K et al (2018) Neuromelanin imaging and midbrain volumetry in progressive supranuclear palsy and Parkinson’s disease: neuromelanin-MRI and Midbrain Volumetry. Mov Disord 33:1488–1492. https://doi.org/10.1002/mds.27365

    Article  CAS  PubMed  Google Scholar 

  17. Ryman SG, Poston KL (2020) MRI biomarkers of motor and non-motor symptoms in Parkinson’s disease. Parkinsonism Relat Disord 73:85–93. https://doi.org/10.1016/j.parkreldis.2019.10.002

    Article  PubMed  Google Scholar 

  18. Jin L, Wang J, Wang C et al (2019) Combined visualization of nigrosome-1 and neuromelanin in the substantia nigra using 3T MRI for the differential diagnosis of essential tremor and de novo Parkinson’s disease. Front Neurol 10:100. https://doi.org/10.3389/fneur.2019.00100

    Article  PubMed  PubMed Central  Google Scholar 

  19. An H, Zeng X, Niu T et al (2018) Quantifying iron deposition within the substantia nigra of Parkinson’s disease by quantitative susceptibility mapping. J Neurol Sci 386:46–52. https://doi.org/10.1016/j.jns.2018.01.008

    Article  CAS  PubMed  Google Scholar 

  20. Xuan M, Guan X, Gu Q et al (2017) Different iron deposition patterns in early- and middle-late-onset Parkinson’s disease. Parkinsonism Relat Disord 44:23–27. https://doi.org/10.1016/j.parkreldis.2017.08.013

    Article  PubMed  Google Scholar 

  21. Acosta-Cabronero J, Cardenas-Blanco A, Betts MJ et al (2017) The whole-brain pattern of magnetic susceptibility perturbations in Parkinson’s disease. Brain 140:118–131. https://doi.org/10.1093/brain/aww278

    Article  PubMed  Google Scholar 

  22. Guan X, Xuan M, Gu Q et al (2017) Regionally progressive accumulation of iron in Parkinson’s disease as measured by quantitative susceptibility mapping: regionally progressive accumulation of iron in Parkinson’s disease. NMR Biomed 30:e3489. https://doi.org/10.1002/nbm.3489

  23. Mazzucchi S, Frosini D, Costagli M et al (2019) Quantitative susceptibility mapping in atypical Parkinsonisms. Neuroimage Clin 24:101999. https://doi.org/10.1016/j.nicl.2019.101999

  24. Zucca FA, Vanna R, Cupaioli FA et al (2018) Neuromelanin organelles are specialized autolysosomes that accumulate undegraded proteins and lipids in aging human brain and are likely involved in Parkinson’s disease. NPJ Park Dis 4:17. https://doi.org/10.1038/s41531-018-0050-8

    Article  CAS  Google Scholar 

  25. Sulzer D, Bogulavsky J, Larsen KE et al (2000) Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc Natl Acad Sci U S A 97:11869–11874. https://doi.org/10.1073/pnas.97.22.11869

  26. Zucca FA, Segura-Aguilar J, Ferrari E et al (2017) Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog Neurobiol 155:96–119. https://doi.org/10.1016/j.pneurobio.2015.09.012

    Article  CAS  PubMed  Google Scholar 

  27. Shen X-M, Xia B, Wrona MZ, Dryhurst G (1996) Synthesis, redox properties, in vivo formation, and neurobehavioral effects of N -acetylcysteinyl conjugates of dopamine: possible metabolites of relevance to Parkinson’s disease. Chem Res Toxicol 9:1117–1126. https://doi.org/10.1021/tx960052v

    Article  CAS  PubMed  Google Scholar 

  28. Zecca L, Bellei C, Costi P et al (2008) New melanic pigments in the human brain that accumulate in aging and block environmental toxic metals. Proc Natl Acad Sci U S A 105:17567–17572. https://doi.org/10.1073/pnas.0808768105

  29. Zucca FA, Bellei C, Giannelli S et al (2006) Neuromelanin and iron in human locus coeruleus and substantia nigra during aging: consequences for neuronal vulnerability. J Neural Transm 113:757–767. https://doi.org/10.1007/s00702-006-0453-2

    Article  CAS  PubMed  Google Scholar 

  30. Giovanni G, Di Matteo V, Esposito E (2009) Birth, life and death of dopaminergic neurons in the substantia nigra. Springer Vienna, Vienna

    Book  Google Scholar 

  31. Snyder AM, Connor JR (2009) Iron, the substantia nigra and related neurological disorders. Biochim Biophys Acta BBA Gen Subj 1790:606–614. https://doi.org/10.1016/j.bbagen.2008.08.005

    Article  CAS  Google Scholar 

  32. Biondetti E, Santin MD, Valabrègue R et al (2021) The spatiotemporal changes in dopamine, neuromelanin and iron characterizing Parkinson’s disease. Brain 144:3114–3125. https://doi.org/10.1093/brain/awab191

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liu Y, Li J, He N et al (2020) Optimizing neuromelanin contrast in the substantia nigra and locus coeruleus using a magnetization transfer contrast prepared 3D gradient recalled echo sequence. Neuroimage 218:116935. https://doi.org/10.1016/j.neuroimage.2020.116935

  34. He N, Langley J, Huddleston DE et al (2020) Increased iron-deposition in lateral-ventral substantia nigra pars compacta: a promising neuroimaging marker for Parkinson’s disease. Neuroimage Clin 28:102391. https://doi.org/10.1016/j.nicl.2020.102391

  35. Zucca FA, Capucciati A, Bellei C et al (2022) Neuromelanins in brain aging and Parkinson’s disease: synthesis, structure, neuroinflammatory, and neurodegenerative role. IUBMB Life iub.2654. https://doi.org/10.1002/iub.2654

  36. Moreno-García A, Kun A, Calero M, Calero O (2021) The neuromelanin paradox and its dual role in oxidative stress and neurodegeneration. Antioxidants 10:124. https://doi.org/10.3390/antiox10010124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Beach TG, Sue LI, Walker DG et al (2007) Marked microglial reaction in normal aging human substantia nigra: correlation with extraneuronal neuromelanin pigment deposits. Acta Neuropathol 114:419–424. https://doi.org/10.1007/s00401-007-0250-5

  38. Li W, Wu B, Batrachenko A et al (2014) Differential developmental trajectories of magnetic susceptibility in human brain gray and white matter over the lifespan: brain magnetic susceptibility over lifespan. Hum Brain Mapp 35:2698–2713. https://doi.org/10.1002/hbm.22360

    Article  CAS  PubMed  Google Scholar 

  39. Hinoda T, Fushimi Y, Okada T et al (2015) Quantitative susceptibility mapping at 3 T and 1.5 T: evaluation of consistency and reproducibility. Invest Radiol 50:522–530. https://doi.org/10.1097/RLI.0000000000000159

    Article  PubMed  Google Scholar 

  40. Sood S, Reutens DC, Kadamangudi S et al (2020) Field strength influences on gradient recalled echo MRI signal compartment frequency shifts. Magn Reson Imaging 70:98–107. https://doi.org/10.1016/j.mri.2020.04.018

    Article  PubMed  Google Scholar 

  41. Wei H, Dibb R, Zhou Y et al (2015) Streaking artifact reduction for quantitative susceptibility mapping of sources with large dynamic range: streaking artifact reduction for QSM. NMR Biomed 28:1294–1303. https://doi.org/10.1002/nbm.3383

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yushkevich PA, Piven J, Hazlett HC et al (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128. https://doi.org/10.1016/j.neuroimage.2006.01.015

    Article  PubMed  Google Scholar 

  43. Xing Y, Sapuan A, Dineen RA, Auer DP (2018) Life span pigmentation changes of the substantia nigra detected by neuromelanin-sensitive MRI: life span pigmentation changes detected by MRI. Mov Disord 33:1792–1799. https://doi.org/10.1002/mds.27502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mukaka MM (2012) Statistics corner: a guide to appropriate use of correlation coefficient in medical research. Malawi Med J 24:69–71

  45. Baron RM, Kenny DA (1986) The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol 50:1173–1182. https://doi.org/10.1037/0022-3514.51.6.1173

    Article  Google Scholar 

  46. Hashido T, Saito S (2016) Quantitative T1, T2, and T2* mapping and semi-quantitative neuromelanin-sensitive magnetic resonance imaging of the human midbrain. PLoS One 11:e0165160. https://doi.org/10.1371/journal.pone.0165160

  47. Rudow G, O’Brien R, Savonenko AV et al (2008) Morphometry of the human substantia nigra in ageing and Parkinson’s disease. Acta Neuropathol 115:461–470. https://doi.org/10.1007/s00401-008-0352-8

  48. Zecca L, Gallorini M, Schünemann V et al (2001) Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: consequences for iron storage and neurodegenerative processes: Nigral iron, neuromelanin and ferritin. J Neurochem 76:1766–1773. https://doi.org/10.1046/j.1471-4159.2001.00186.x

    Article  CAS  PubMed  Google Scholar 

  49. Zecca L, Fariello R, Riederer P et al (2002) The absolute concentration of nigral neuromelanin, assayed by a new sensitive method, increases throughout the life and is dramatically decreased in Parkinson’s disease. FEBS Lett 510:216–220. https://doi.org/10.1016/S0014-5793(01)03269-0

    Article  CAS  PubMed  Google Scholar 

  50. Di Lorenzo Alho AT, Suemoto CK, Polichiso L et al (2016) Three-dimensional and stereological characterization of the human substantia nigra during aging. Brain Struct Funct 221:3393–3403. https://doi.org/10.1007/s00429-015-1108-6

    Article  PubMed  Google Scholar 

  51. Treit S, Naji N, Seres P et al (2021) R2 * and quantitative susceptibility mapping in deep gray matter of 498 healthy controls from 5 to 90 years. Hum Brain Mapp 42:4597–4610. https://doi.org/10.1002/hbm.25569

    Article  PubMed  PubMed Central  Google Scholar 

  52. Persson N, Wu J, Zhang Q et al (2015) Age and sex related differences in subcortical brain iron concentrations among healthy adults. Neuroimage 122:385–398. https://doi.org/10.1016/j.neuroimage.2015.07.050

    Article  PubMed  Google Scholar 

  53. Zhang Y, Wei H, Cronin MJ et al (2018) Longitudinal atlas for normative human brain development and aging over the lifespan using quantitative susceptibility mapping. Neuroimage 171:176–189. https://doi.org/10.1016/j.neuroimage.2018.01.008

    Article  PubMed  Google Scholar 

  54. Reimão S, Ferreira S, Nunes RG et al (2016) Magnetic resonance correlation of iron content with neuromelanin in the substantia nigra of early-stage Parkinson’s disease. Eur J Neurol 23:368–374. https://doi.org/10.1111/ene.12838

    Article  PubMed  Google Scholar 

  55. Kitao S, Matsusue E, Fujii S et al (2013) Correlation between pathology and neuromelanin MR imaging in Parkinson’s disease and dementia with Lewy bodies. Neuroradiology 55:947–953. https://doi.org/10.1007/s00234-013-1199-9

    Article  PubMed  Google Scholar 

  56. Ascherio A, Schwarzschild MA (2016) The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol 15:1257–1272. https://doi.org/10.1016/S1474-4422(16)30230-7

    Article  PubMed  Google Scholar 

  57. Langley J, Hussain S, Flores JJ et al (2020) Characterization of age-related microstructural changes in locus coeruleus and substantia nigra pars compacta. Neurobiol Aging 87:89–97. https://doi.org/10.1016/j.neurobiolaging.2019.11.016

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank all the volunteers for their participation and support in the study.

Funding

This work was supported in part by the Natural Science Foundation of Shandong (grant number: ZR2020QH267), the China Postdoctoral Science Foundation (grant number: 2022M711987), and the Taishan Scholars Project (grant number: tsqn201812147).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangbin Wang.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Guangbin Wang.

Conflict of interest

One of the authors (Weibo Chen) is an employee of Philips. The remaining authors declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was obtained from all subjects in this study.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• prospective

• cross sectional study

• performed at one institution

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 223 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Gong, T., Sun, C. et al. Regional age-related changes of neuromelanin and iron in the substantia nigra based on neuromelanin accumulation and iron deposition. Eur Radiol 33, 3704–3714 (2023). https://doi.org/10.1007/s00330-023-09411-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-023-09411-8

Keywords

Navigation