Skip to main content
Log in

Iron-sensitive MR imaging of the primary motor cortex to differentiate hereditary spastic paraplegia from other motor neuron diseases

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

An Editorial Comment to this article was published on 08 September 2022

Abstract

Objectives

Hereditary spastic paraplegia (HSP) is a group of genetic neurodegenerative diseases characterised by upper motor neuron (UMN) impairment of the lower limbs. The differential diagnosis with primary lateral sclerosis (PLS) and amyotrophic lateral sclerosis (ALS) can be challenging. As microglial iron accumulation was reported in the primary motor cortex (PMC) of ALS cases, here we assessed the radiological appearance of the PMC in a cohort of HSP patients using iron-sensitive MR imaging and compared the PMC findings among HSP, PLS, and ALS patients.

Methods

We included 3-T MRI scans of 23 HSP patients, 7 PLS patients with lower limb onset, 8 ALS patients with lower limb and prevalent UMN onset (UMN-ALS), and 84 ALS patients with any other clinical picture. The PMC was visually rated on 3D T2*-weighted images as having normal signal intensity, mild hypointensity, or marked hypointensity, and differences in the frequency distribution of signal intensity among the diseases were investigated.

Results

The marked hypointensity in the PMC was visible in 3/22 HSP patients (14%), 7/7 PLS patients (100%), 6/8 UMN-ALS patients (75%), and 35/84 ALS patients (42%). The frequency distribution of normal signal intensity, mild hypointensity, and marked hypointensity in HSP patients was different than that in PLS, UMN-ALS, and ALS patients (p < 0.01 in all cases).

Conclusions

Iron-sensitive imaging of the PMC could provide useful information in the diagnostic work - up of adult patients with a lower limb onset UMN syndrome, as the cortical hypointensity often seen in PLS and ALS cases is apparently rare in HSP patients.

Key Points

The T2* signal intensity of the primary motor cortex was investigated in patients with HSP, PLS with lower limb onset, and ALS with lower limb and prevalent UMN onset (UMN-ALS) using a clinical 3-T MRI sequence.

Most HSP patients had normal signal intensity in the primary motor cortex (86%); on the contrary, all the PLS and the majority of UMN-ALS patients (75%) had marked cortical hypointensity.

The T2*-weighted imaging of the primary motor cortex could provide useful information in the differential diagnosis of sporadic adult-onset UMN syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ALS:

Amyotrophic lateral sclerosis

HSP:

Hereditary spastic paraplegia

MND:

Motor neuron disease

PLS:

Primary lateral sclerosis

UMN:

Upper motor neuron

References

  1. Shribman S, Reid E, Crosby AH, Houlden H, Warner TT (2019) Hereditary spastic paraplegia: from diagnosis to emerging therapeutic approaches. Lancet Neurol 18(12):1136–1146

    CAS  PubMed  Google Scholar 

  2. Murala S, Nagarajan E, Bollu PC (2021) Hereditary spastic paraplegia. Neurol Sci 42(3):883–894

    PubMed  Google Scholar 

  3. Saputra L, Kumar KR (2021) Challenges and controversies in the genetic diagnosis of hereditary spastic paraplegia. Curr Neurol Neurosci Rep 21(4):15. https://doi.org/10.1007/s11910-021-01099-x

    Article  PubMed  PubMed Central  Google Scholar 

  4. de Souza PVS, de Rezende Pinto WBV, de Rezende Batistella GN, Bortholin T, Oliveira ASB (2017) Hereditary spastic paraplegia: clinical and genetic hallmarks. Cerebellum 16(2):525–551

    PubMed  Google Scholar 

  5. Deluca GC, Ebers GC, Esiri MM (2004) The extent of axonal loss in the long tracts in hereditary spastic paraplegia. Neuropathol Appl Neurobiol 30(6):576–584

    CAS  PubMed  Google Scholar 

  6. Salinas S, Proukakis C, Crosby A, Warner TT (2008) Hereditary spastic paraplegia: clinical features and pathogenetic mechanisms. Lancet Neurol 7(12):1127–1138

    CAS  PubMed  Google Scholar 

  7. Behan WM, Maia M (1974) Strümpell’s familial spastic paraplegia: genetics and neuropathology. J Neurol Neurosurg Psychiatry 37(1):8–20

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bruyn RP (1992) The neuropathology of hereditary spastic paraparesis. Clin Neurol Neurosurg 94(Suppl):S16–S18

    PubMed  Google Scholar 

  9. Schwarz GA, Liu CN (1956) Hereditary (familial) spastic paraplegia; further clinical and pathologic observations. AMA Arch Neurol Psychiatry 75(2):144–162

    CAS  PubMed  Google Scholar 

  10. Wakabayashi K, Kobayashi H, Kawasaki S, Kondo H, Takahashi H (2001) Autosomal recessive spastic paraplegia with hypoplastic corpus callosum, multisystem degeneration and ubiquitinated eosinophilic granules. Acta Neuropathol 101(1):69–73

    CAS  PubMed  Google Scholar 

  11. Denora PS, Smets K, Zolfanelli F et al (2016) Motor neuron degeneration in spastic paraplegia 11 mimics amyotrophic lateral sclerosis lesions. Brain 139(Pt 6):1723–1734

    PubMed  PubMed Central  Google Scholar 

  12. White KD, Ince PG, Lusher M et al (2000) Clinical and pathologic findings in hereditary spastic paraparesis with spastin mutation. Neurology 55(1):89–94

    CAS  PubMed  Google Scholar 

  13. Fink JK (2001) Progressive spastic paraparesis: hereditary spastic paraplegia and its relation to primary and amyotrophic lateral sclerosis. Semin Neurol 21(2):199–207

    CAS  PubMed  Google Scholar 

  14. Harding AE (1981) Hereditary ‘pure’ spastic paraplegia: a clinical and genetic study of 22 families. J Neurol Neurosurg Psychiatry 44(10):871–883

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Brugman F, Veldink JH, Franssen H et al (2009) Differentiation of hereditary spastic paraparesis from primary lateral sclerosis in sporadic adult-onset upper motor neuron syndromes. Arch Neurol 66(4):509–514

    PubMed  Google Scholar 

  16. Fullam T, Statland J (2021) Upper motor neuron disorders: primary lateral sclerosis, upper motor neuron dominant amyotrophic lateral sclerosis, and hereditary spastic paraplegia. Brain Sci 11(5):611. https://doi.org/10.3390/brainsci11050611

    Article  PubMed  PubMed Central  Google Scholar 

  17. Agosta F, Chiò A, Cosottini M et al (2010) The present and the future of neuroimaging in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol 31(10):1769–1777

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cosottini M, Pesaresi I, Piazza S et al (2012) Structural and functional evaluation of cortical motor areas in amyotrophic lateral sclerosis. Exp Neurol 234(1):169–180

    PubMed  Google Scholar 

  19. Kwan JY, Jeong SY, Van Gelderen P et al (2012) Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 tesla MRI and pathology. PLoS One 7(4):e35241. https://doi.org/10.1371/journal.pone.0035241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cosottini M, Donatelli G, Costagli M et al (2016) High-resolution 7T MR imaging of the motor cortex in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol 37:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Costagli M, Donatelli G, Biagi L et al (2016) Magnetic susceptibility in the deep layers of the primary motor cortex in amyotrophic lateral sclerosis. Neuroimage Clin 12:965–969

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Donatelli G, Retico A, Caldarazzo Ienco E et al (2018) Semiautomated evaluation of the primary motor cortex in patients with amyotrophic lateral sclerosis at 3T. AJNR Am J Neuroradiol 39(1):63–69

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Donatelli G, Caldarazzo Ienco E, Costagli M et al (2019) MRI cortical feature of bulbar impairment in patients with amyotrophic lateral sclerosis. Neuroimage Clin 24:101934. https://doi.org/10.1016/j.nicl.2019.101934

    Article  PubMed  PubMed Central  Google Scholar 

  24. Filippi M, Agosta F, Abrahams S et al (2010) EFNS guidelines on the use of neuroimaging in the management of motor neuron diseases. Eur J Neurol 17(4):526–533

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Harding AE (1983) Classification of the hereditary ataxias and paraplegias. Lancet 1(8334):1151–1155

    CAS  PubMed  Google Scholar 

  26. Schüle R, Holland-Letz T, Klimpe S et al (2006) The Spastic Paraplegia Rating Scale (SPRS): a reliable and valid measure of disease severity. Neurology 67(3):430–434

    PubMed  Google Scholar 

  27. Turner MR, Barohn RJ, Corcia P et al (2020) Primary lateral sclerosis: consensus diagnostic criteria. J Neurol Neurosurg Psychiatry 91:373–377

    PubMed  Google Scholar 

  28. Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron Diseases (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299

    CAS  PubMed  Google Scholar 

  29. Cedarbaum JM, Stambler N, Malta E et al (1999) The ALSFRS-R: a revised ALS Functional Rating Scale that incorporates assessments of respiratory function. BDNF ALS Study Group (phase III). J Neurol Sci 169(1-2):13–21

    CAS  PubMed  Google Scholar 

  30. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174

    CAS  PubMed  Google Scholar 

  31. Hope ACA (1968) A simplified Monte Carlo significance test procedure. J R Stat Soc Series B 30:582–598

    Google Scholar 

  32. Strong MJ, Gordon PH (2005) Primary lateral sclerosis, hereditary spastic paraplegia and amyotrophic lateral sclerosis: discrete entities or spectrum? Amyotroph Lateral Scler Other Motor Neuron Disord 6(1):8–16

    PubMed  Google Scholar 

  33. Gordon PH, Cheng B, Katz IB et al (2006) The natural history of primary lateral sclerosis. Neurology 66(5):647–653

    CAS  PubMed  Google Scholar 

  34. Gozutok O, Helmold BR, Ozdinler PH (2021) Mutations and protein interaction landscape reveal key cellular events perturbed in upper motor neurons with HSP and PLS. Brain Sci 11(5):578. https://doi.org/10.3390/brainsci11050578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mackay-Sim A (2021) Hereditary spastic paraplegia: from genes, cells and networks to novel pathways for drug discovery. Brain Sci 11(3):403. https://doi.org/10.3390/brainsci11030403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fink JK (2013) Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms. Acta Neuropathol 126(3):307–328

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Suzuki SO, Iwaki T, Arakawa K, Furuya H, Fujii N, Iwaki A (2011) An autopsy case of adult-onset hereditary spastic paraplegia type 2 with a novel mutation in exon 7 of the proteolipid protein 1 gene. Acta Neuropathol 122(6):775–781

    CAS  PubMed  Google Scholar 

  38. Agosta F, Scarlato M, Spinelli EG et al (2015) Hereditary spastic paraplegia: beyond clinical phenotypes toward a unified pattern of central nervous system damage. Radiology 276(1):207–218

    PubMed  Google Scholar 

  39. da Graça FF, de Rezende TJR, Vasconcellos LFR, Pedroso JL, Barsottini OGP, França MC Jr (2019) Neuroimaging in hereditary spastic paraplegias: current use and future perspectives. Front Neurol 9:1117. https://doi.org/10.3389/fneur.2018.01117

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lindig T, Bender B, Hauser TK et al (2015) Gray and white matter alterations in hereditary spastic paraplegia type SPG4 and clinical correlations. J Neurol 262(8):1961–1971

    PubMed  Google Scholar 

  41. Ince PG, Evans J, Knopp M et al (2003) Corticospinal tract degeneration in the progressive muscular atrophy variant of ALS. Neurology 60(8):1252–1258

    CAS  PubMed  Google Scholar 

  42. Philips T, Robberecht W (2011) Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol 10(3):253–263

    CAS  PubMed  Google Scholar 

  43. Riad SM, Hathout H, Huang JC (2011) High T2 signal in primary lateral sclerosis supports the topographic distribution of fibers in the corpus callosum: assessing disease in the primary motor segment. AJNR Am J Neuroradiol 32(4):E61–E64

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Pringle CE, Hudson AJ, Munoz DG, Kiernan JA, Brown WF, Ebers GC (1992) Primary lateral sclerosis. Clinical features, neuropathology and diagnostic criteria. Brain 115(Pt2):495–520

    PubMed  Google Scholar 

  45. Tan CF, Kakita A, Piao YS et al (2003) Primary lateral sclerosis: a rare upper-motor-predominant form of amyotrophic lateral sclerosis often accompanied by frontotemporal lobar degeneration with ubiquitinated neuronal inclusions? Report of an autopsy case and a review of the literature. Acta Neuropathol 105(6):615–620

    PubMed  Google Scholar 

  46. Dickson DW, Josephs KA, Amador-Ortiz C (2007) TDP-43 in differential diagnosis of motor neuron disorders. Acta Neuropathol 114(1):71–79

    CAS  PubMed  Google Scholar 

  47. Beal MF, Richardson EP Jr (1981) Primary lateral sclerosis: a case report. Arch Neurol 38(10):630–633

    CAS  PubMed  Google Scholar 

  48. Watanabe R, Iino M, Honda M, Sane J, Hara M (1997) Primary lateral sclerosis. Neuropathology 17:220–224

    Google Scholar 

  49. Paganoni S, Alshikho MJ, Zürcher NR et al (2017) Imaging of glia activation in people with primary lateral sclerosis. Neuroimage Clin 17:347–353

    PubMed  PubMed Central  Google Scholar 

  50. Mackenzie IRA (2020) Neuropathology of primary lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 21(sup1):47–51

    CAS  PubMed  Google Scholar 

  51. de Bot ST, van den Elzen RTM, Mensenkamp AR et al (2010) Hereditary spastic paraplegia due to SPAST mutations in 151 Dutch patients: new clinical aspects and 27 novel mutations. J Neurol Neurosurg Psychiatry 81(10):1073–1078

    PubMed  Google Scholar 

  52. Magariello A, Muglia M, Patitucci A et al (2010) Mutation analysis of the SPG4 gene in Italian patients with pure and complicated forms of spastic paraplegia. J Neurol Sci 288(1-2):96–100

    CAS  PubMed  Google Scholar 

  53. D’Amore A, Tessa A, Casali C et al (2018) Next generation molecular diagnosis of hereditary spastic paraplegias: an Italian cross-sectional study. Front Neurol 9:981. https://doi.org/10.3389/fneur.2018.00981

    Article  PubMed  PubMed Central  Google Scholar 

  54. Brugman F, Wokke JH, Scheffer H, Versteeg MH, Sistermans EA, van den Berg LH (2005) Spastin mutations in sporadic adult-onset upper motor neuron syndromes. Ann Neurol 58(6):865–869

    CAS  PubMed  Google Scholar 

  55. Lee H, Deignan JL, Dorrani N et al (2014) Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA 312(18):1880–1887

    PubMed  PubMed Central  Google Scholar 

  56. DaRe JT, Vasta V, Penn J, Tran N-T B, Hahn SH (2013) Targeted exome sequencing for mitochondrial disorders reveals high genetic heterogeneity. BMC Med Genet 14:118. https://doi.org/10.1186/1471-2350-14-118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jia X, Madireddy L, Caillier S (2018) Genome sequencing uncovers phenocopies in primary progressive multiple sclerosis. Ann Neurol 84(1):51–63

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Balicza P, Varga NÁ, Bolgár B et al (2019) Comprehensive analysis of rare variants of 101 autism-linked genes in a Hungarian cohort of autism spectrum disorder patients. Front Genet 10:434. https://doi.org/10.3389/fgene.2019.00434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mintchev N, Zamba-Papanicolaou E, Kleopa KA, Christodoulou K (2009) A novel ALS2 splice-site mutation in a Cypriot juvenile-onset primary lateral sclerosis family. Neurology 72(1):28–32

    CAS  PubMed  Google Scholar 

  60. Al-Saif A, Bohlega S, Al-Mohanna F (2012) Loss of ERLIN2 function leads to juvenile primary lateral sclerosis. Ann Neurol 72(4):510–516

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. P. Frumento for his valuable suggestions on data analysis.

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graziella Donatelli.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Mirco Cosottini.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

One of the authors has significant statistical expertise.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional review board approval was obtained.

Methodology

• retrospective

• observational

• multicentre study

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplemental Figure

Examples of the scoring system used to rate the signal intensity of the primary motor cortex. Compared to the post-central cortex, the deep layers of the primary motor cortex (arrows) were rated as isointense (A), mildly hypointense (B) or marked hypointense (C) (JPG 108 kb)

Supplemental Table

Clinical and genetic data of HSP patients (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cosottini, M., Donatelli, G., Ricca, I. et al. Iron-sensitive MR imaging of the primary motor cortex to differentiate hereditary spastic paraplegia from other motor neuron diseases. Eur Radiol 32, 8058–8064 (2022). https://doi.org/10.1007/s00330-022-08865-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-022-08865-6

Keywords

Navigation