Skip to main content
Log in

Capability of intravoxel incoherent motion and diffusion tensor imaging to detect early kidney injury in type 2 diabetes

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To prospectively investigate the capability of intravoxel incoherent motion (IVIM) and conventional diffusion tensor imaging (DTI) to identify early kidney function injury in type 2 diabetes.

Methods

Forty-one diabetes patients (normoalbuminuria: n = 27; microalbuminuria: n = 14) and 28 volunteers were recruited. All participants were examined using DTI and IVIM with 3.0-T MRI. DTI parameters (mean diffusivity [MD], fractional anisotropy [FA]), and IVIM parameters (true diffusion coefficient [D], pseudo-diffusion coefficient [D*], and pseudo-diffusion component fraction [f]) were measured in the renal parenchyma (cortex and medulla) by two experienced radiologists independently. Image features were compared among the groups using separate one-way analyses of variance. Diagnostic performances of various diffusion parameters for predicting diabetic renal damage were compared.

Results

The medullary D and FA values were significantly different among the microalbuminuria subgroup, normoalbuminuria subgroup, and control group (all p < 0.001). In medulla, area under the curve (AUC) values for combined FA and D were significantly higher than single FA (AUC = 0.938, 0.769, respectively; p = 0.003), and the combined AUC of FA and D was numerically higher than that of single D (0.938 vs 0.878, p > 0.05). AUC of combined FA and D was 0.985, not significantly different from individual AUC for FA and D (AUC = 0.909 and 0.952, respectively; all p > 0.05) in differentiating the microalbuminuria subgroup from the control group.

Conclusion

IVIM-derived D and DTI-derived FA values were better than other parameters for evaluating early kidney impairment of diabetes. The single indicator FA and D performed as well as the combined diagnostic indicator in the medulla for differentiating the microalbuminuria subgroup from the control group.

Key Points

• We speculated that early renal progression in type 2 diabetes result from restricted tubular flow and kidney tubule dysregulation may precede or at least accompany abnormal glomerular changes.

• In medulla, the AUC values of FA and D and the combination of FA and D obtained by comparing the microalbuminuria subgroup with the control group were 0.909, 0.952, and 0.985, respectively.

• IVIM-derived D and DTI-derived FA are effective MR biomarkers to evaluate early alterations of the renal function in patients with diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACR:

Albumin-to-creatinine rate

AUC:

Area under the curve

D :

True diffusion coefficient

D*:

Pseudo-diffusion coefficient

DTI:

Diffusion tensor imaging

DWI:

Diffusion-weighted imaging

eGFR:

Estimated glomerular filtration rate

f :

Pseudo-diffusion component fraction

FA:

Fractional anisotropy

FOV:

Field of view

HbA1c:

Glycosylated hemoglobin

IVIM:

Intravoxel incoherent motion

MD:

Mean diffusivity

ROC:

Receiver operating characteristic curve

ROI:

Region of interest

TE:

Echo time

TR:

Repetition time

References

  1. GBD Chronic Kidney Disease Collaboration (2020) Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395:709–733

  2. Kato M, Natarajan R (2019) Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat Rev Nephrol 15:327–345

    Article  PubMed  PubMed Central  Google Scholar 

  3. Doshi SM, Friedman AN (2017) Diagnosis and management of type 2 diabetic kidney disease. Clin J Am Soc Nephrol 12:1366–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fox CS, Matsushita K, Woodward M et al (2012) Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet 380:1662–1673

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lin YC, Chang YH, Yang SY, Wu KD, Chu TS (2018) Update of pathophysiology and management of diabetic kidney disease. J Formos Med Assoc 117:662–675

    Article  CAS  PubMed  Google Scholar 

  6. Liyanage T, Ninomiya T, Jha V et al (2015) Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet 385:1975–1982

    Article  PubMed  Google Scholar 

  7. Fu H, Liu S, Bastacky SI, Wang X, Tian XJ, Zhou D (2019) Diabetic kidney diseases revisited: a new perspective for a new era. Mol Metab 30:250–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Colhoun HM, Marcovecchio ML (2018) Biomarkers of diabetic kidney disease. Diabetologia 61:996–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hussain S, Habib A, Hussain MS, Najmi AK (2020) Potential biomarkers for early detection of diabetic kidney disease. Diabetes Res Clin Pract 161:108082

    Article  CAS  PubMed  Google Scholar 

  10. Papadopoulou-Marketou N, Kanaka-Gantenbein C, Marketos N, Chrousos GP, Papassotiriou I (2017) Biomarkers of diabetic nephropathy: A 2017 update. Crit Rev Clin Lab Sci 54:326–342

    Article  CAS  PubMed  Google Scholar 

  11. Caroli A, Schneider M, Friedli I et al (2018) Diffusion-weighted magnetic resonance imaging to assess diffuse renal pathology: a systematic review and statement paper. Nephrol Dial Transplant 33:ii29–ii40

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liu Z, Xu Y, Zhang J et al (2015) Chronic kidney disease: pathological and functional assessment with diffusion tensor imaging at 3T MR. Eur Radiol 25:652–660

    Article  PubMed  Google Scholar 

  13. Gaudiano C, Clementi V, Busato F et al (2013) Diffusion tensor imaging and tractography of the kidneys: assessment of chronic parenchymal diseases. Eur Radiol 23:1678–1685

    Article  PubMed  Google Scholar 

  14. Chen X, Xiao W, Li X, He J, Huang X, Tan Y (2014) In vivo evaluation of renal function using diffusion weighted imaging and diffusion tensor imaging in type 2 diabetics with normoalbuminuria versus microalbuminuria. Front Med 8:471–476

    Article  PubMed  Google Scholar 

  15. Ding Y, Zeng M, Rao S, Chen C, Fu C, Zhou J (2016) Comparison of Biexponential and monoexponential model of diffusion-weighted imaging for distinguishing between common renal cell carcinoma and fat poor angiomyolipoma. Korean J Radiol 17:853–863

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li H, Liang L, Li A et al (2017) Monoexponential, biexponential, and stretched exponential diffusion-weighted imaging models: quantitative biomarkers for differentiating renal clear cell carcinoma and minimal fat angiomyolipoma. J Magn Reson Imaging 46:240–247

    Article  PubMed  Google Scholar 

  17. van Baalen S, Leemans A, Dik P, Lilien MR, Ten Haken B, Froeling M (2017) Intravoxel incoherent motion modeling in the kidneys: comparison of mono-, bi-, and triexponential fit. J Magn Reson Imaging 46:228–239

    Article  PubMed  Google Scholar 

  18. Le Bihan D (2019) What can we see with IVIM MRI? Neuroimage 187:56–67

    Article  PubMed  Google Scholar 

  19. Mao W, Zhou J, Zeng M et al (2018) Intravoxel incoherent motion diffusion-weighted imaging for the assessment of renal fibrosis of chronic kidney disease: a preliminary study. Magn Reson Imaging 47:118–124

    Article  PubMed  Google Scholar 

  20. Ebrahimi B, Rihal N, Woollard JR, Krier JD, Eirin A, Lerman LO (2014) Assessment of renal artery stenosis using intravoxel incoherent motion diffusion-weighted magnetic resonance imaging analysis. Invest Radiol 49:640–646

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li Q, Li J, Zhang L, Chen Y, Zhang M, Yan F (2014) Diffusion-weighted imaging in assessing renal pathology of chronic kidney disease: a preliminary clinical study. Eur J Radiol 83:756–762

    Article  PubMed  Google Scholar 

  22. Mao W, Zhou J, Zeng M et al (2018) Chronic kidney disease: pathological and functional evaluation with intravoxel incoherent motion diffusion-weighted imaging. J Magn Reson Imaging 47:1251–1259

    Article  PubMed  Google Scholar 

  23. Wang W, Yu Y, Wen J et al (2019) Combination of functional magnetic resonance imaging and histopathologic analysis to evaluate interstitial fibrosis in kidney allografts. Clin J Am Soc Nephrol 14:1372–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hueper K, Khalifa AA, Brasen JH et al (2016) Diffusion-weighted imaging and diffusion tensor imaging detect delayed graft function and correlate with allograft fibrosis in patients early after kidney transplantation. J Magn Reson Imaging 44:112–121

    Article  PubMed  Google Scholar 

  25. Xie Y, Li Y, Wen J et al (2018) Functional evaluation of transplanted kidneys with reduced field-of-view diffusion-weighted imaging at 3T. Korean J Radiol 19:201–208

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang YC, Feng Y, Lu CQ, Ju S (2018) Renal fat fraction and diffusion tensor imaging in patients with early-stage diabetic nephropathy. Eur Radiol 28:3326–3334

    Article  PubMed  Google Scholar 

  27. Brown RS, Sun MRM, Stillman IE, Russell TL, Rosas SE, Wei JL (2020) The utility of magnetic resonance imaging for noninvasive evaluation of diabetic nephropathy. Nephrol Dial Transplant 35:970–978

    Article  PubMed  Google Scholar 

  28. Feng YZ, Ye YJ, Cheng ZY et al (2020) Non-invasive assessment of early stage diabetic nephropathy by DTI and BOLD MRI. Br J Radiol 93:20190562

    Article  PubMed  PubMed Central  Google Scholar 

  29. Buse JB, Wexler DJ, Tsapas A et al (2020) 2019 Update to: Management of Hyperglycemia in Type 2 Diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 43:487–493

    Article  CAS  PubMed  Google Scholar 

  30. Cheung JS, Fan SJ, Chow AM, Zhang J, Man K, Wu EX (2010) Diffusion tensor imaging of renal ischemia reperfusion injury in an experimental model. NMR Biomed 23:496–502

    Article  PubMed  Google Scholar 

  31. Fan WJ, Ren T, Li Q et al (2016) Assessment of renal allograft function early after transplantation with isotropic resolution diffusion tensor imaging. Eur Radiol 26:567–575

    Article  PubMed  Google Scholar 

  32. Sigmund EE, Vivier PH, Sui D et al (2012) Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under hydration and furosemide flow challenges. Radiology 263:758–769

    Article  PubMed  Google Scholar 

  33. Iima M, Le Bihan D (2016) Clinical intravoxel incoherent motion and diffusion MR imaging: past, present, and future. Radiology 278:13–32

    Article  PubMed  Google Scholar 

  34. Zhang JL, Lee VS (2020) Renal perfusion imaging by MRI. J Magn Reson Imaging 52:369–379

    Article  PubMed  Google Scholar 

  35. Hueper K, Gutberlet M, Rodt T et al (2011) Diffusion tensor imaging and tractography for assessment of renal allograft dysfunction-initial results. Eur Radiol 21:2427–2433

    Article  PubMed  Google Scholar 

  36. Zhong Y, Wang H, Shen Y et al (2017) Diffusion-weighted imaging versus contrast-enhanced MR imaging for the differentiation of renal oncocytomas and chromophobe renal cell carcinomas. Eur Radiol 27:4913–4922

    Article  PubMed  Google Scholar 

  37. Ding Y, Tan Q, Mao W et al (2019) Differentiating between malignant and benign renal tumors: do IVIM and diffusion kurtosis imaging perform better than DWI? Eur Radiol 29:6930–6939

    Article  PubMed  Google Scholar 

  38. Hotker AM, Mazaheri Y, Wibmer A et al (2017) Differentiation of clear cell renal cell carcinoma from other renal cortical tumors by use of a quantitative multiparametric MRI approach. AJR Am J Roentgenol 208:W85–W91

    Article  PubMed  PubMed Central  Google Scholar 

  39. Li Y, Shi D, Zhang H et al (2021) The application of functional magnetic resonance imaging in type 2 diabetes rats with contrast-induced acute kidney injury and the associated innate immune response. Front Physiol 12:669581

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hashimoto Y, Yamagishi S, Mizukami H et al (2011) Polyol pathway and diabetic nephropathy revisited: early tubular cell changes and glomerulopathy in diabetic mice overexpressing human aldose reductase. J Diabetes Investig 2:111–122

    Article  CAS  PubMed  Google Scholar 

  41. Gilbert RE (2017) Proximal tubulopathy: prime mover and key therapeutic target in diabetic kidney disease. Diabetes 66:791–800

    Article  CAS  PubMed  Google Scholar 

  42. Humphreys BD (2012) Targeting pericyte differentiation as a strategy to modulate kidney fibrosis in diabetic nephropathy. Semin Nephrol 32:463–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rouviere O, Cornelis F, Brunelle S et al (2020) Imaging protocols for renal multiparametric MRI and MR urography: results of a consensus conference from the French Society of Genitourinary Imaging. Eur Radiol 30:2103–2114

    Article  PubMed  Google Scholar 

  44. Cheng ZY, Feng YZ, Hu JJ et al (2019) Intravoxel incoherent motion imaging of the kidney: the application in patients with hyperuricemia. J Magn Reson Imaging 51:833–840

    Article  PubMed  Google Scholar 

  45. Deng Y, Yang B, Peng Y, Liu Z, Luo J, Du G (2018) Use of intravoxel incoherent motion diffusion-weighted imaging to detect early changes in diabetic kidneys. Abdom Radiol (NY) 43:2728–2733

    Article  Google Scholar 

  46. Zhang JL, Sigmund EE, Chandarana H et al (2010) Variability of renal apparent diffusion coefficients: limitations of the monoexponential model for diffusion quantification. Radiology 254:783–792

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mrđanin T, Nikolić O, Molnar U, Mitrović M, Till V (2021) Diffusion-weighted imaging in the assessment of renal function in patients with diabetes mellitus type 2. MAGMA 34:273–283

    Article  PubMed  Google Scholar 

  48. Lu L, Sedor JR, Gulani V et al (2011) Use of diffusion tensor MRI to identify early changes in diabetic nephropathy. Am J Nephrol 34:476–482

    Article  PubMed  PubMed Central  Google Scholar 

  49. Deng Y, Yang BR, Luo JW, Du GX, Luo LP (2020) DTI-based radiomics signature for the detection of early diabetic kidney damage. Abdom Radiol (NY) 45:2526–2531

    Article  Google Scholar 

  50. Van Phi VD, Becker AS, Ciritsis A, Reiner CS, Boss A (2018) Intravoxel incoherent motion analysis of abdominal organs: application of simultaneous multislice acquisition. Invest Radiol 53:179–185

    Article  Google Scholar 

  51. Gurney-Champion OJ, Rauh SS, Harrington K, Oelfke U, Laun FB, Wetscherek A (2020) Optimal acquisition scheme for flow-compensated intravoxel incoherent motion diffusion-weighted imaging in the abdomen: an accurate and precise clinically feasible protocol. Magn Reson Med 83:1003–1015

    Article  PubMed  Google Scholar 

  52. Notohamiprodjo M, Dietrich O, Horger W et al (2010) Diffusion tensor imaging (DTI) of the kidney at 3 tesla-feasibility, protocol evaluation and comparison to 1.5 Tesla. Invest Radiol 45:245–254

    Article  PubMed  Google Scholar 

  53. Ljimani A, Caroli A, Laustsen C et al (2020) Consensus-based technical recommendations for clinical translation of renal diffusion-weighted MRI. MAGMA 33:177–195

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.cn) for the English language editing.

Funding

This study has received funding by the National Natural Science Foundation of China (Grant 82071886) and the Scientific Research Foundation for Advanced Talents, Xiang’an Hospital of Xiamen University (no. PM201809170011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Ren.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Ke Ren.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• Prospective

• Diagnostic or prognostic study

• Performed at one institution

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Wang, P., Shi, D. et al. Capability of intravoxel incoherent motion and diffusion tensor imaging to detect early kidney injury in type 2 diabetes. Eur Radiol 32, 2988–2997 (2022). https://doi.org/10.1007/s00330-021-08415-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-021-08415-6

Keywords

Navigation