Skip to main content

Advertisement

Log in

Staging, recurrence and follow-up of uterine cervical cancer using MRI: Updated Guidelines of the European Society of Urogenital Radiology after revised FIGO staging 2018

  • Urogenital
  • Published:
European Radiology Aims and scope Submit manuscript

A Correction to this article was published on 17 June 2021

This article has been updated

Abstract

Objectives

The recommendations cover indications for MRI examination including acquisition planes, patient preparation, imaging protocol including multi-parametric approaches such as diffusion-weighted imaging (DWI-MR),  dynamic contrast-enhanced imaging (DCE-MR) and standardised reporting. The document also underscores the value of whole-body 18-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (FDG-PET/CT) and highlights potential future methods.

Methods

In 2019, the ESUR female pelvic imaging working group reviewed the revised 2018 FIGO staging system, the up-to-date clinical management guidelines, and the recent imaging literature. The RAND-UCLA Appropriateness Method (RAM) was followed to develop the current ESUR consensus guidelines following methodological steps: literature research, questionnaire developments, panel selection, survey, data extraction and analysis.

Results

The updated ESUR guidelines are recommendations based on ≥ 80% consensus among experts. If ≥ 80% agreement was not reached, the action was indicated as optional.

Conclusions

The present ESUR guidelines focus on the main role of MRI in the initial staging, response monitoring and evaluation of disease recurrence. Whole-body FDG-PET plays an important role in the detection of lymph nodes (LNs) and distant metastases.

Key Points

• T2WI and DWI-MR are now recommended for initial staging, monitoring of response and evaluation of recurrence.

• DCE-MR is optional; its primary role remains in the research setting.

• T2WI, DWI-MRI and whole-body FDG-PET/CT enable comprehensive assessment of treatment response and recurrence

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Change history

Abbreviations

2D:

Two dimensional

3D:

Three dimensional

ADC:

Apparent diffusion coefficient

CCRT:

Concurrent chemoradiotherapy

CT:

Computed tomography

DCE-MRI:

Dynamic contrast-enhanced imaging

DWI-MR:

Diffusion-weighted imaging

EBRT:

External beam radiation

ESUR:

European Society of Urogenital Radiology

FDG-PET/CT:

18-Fluorodeoxyglucose positron emission tomography/computed tomography

FIGO:

International Federation of Gynaecology and Obstetrics

LN:

Lymph node

LNM:

Lymph node metastases

MRI:

Magnetic resonance imaging

PET/MRI:

18-Fluorodeoxyglucose positron emission tomography/magnetic resonance imaging

PMI:

Parametrial invasion

rFOV:

Reduced field-of-view

T2WI:

T2-weighted imaging

References

  1. Balleyguier C, Sala E, Da Cunha T et al (2011) Staging of uterine cervical cancer with MRI: guidelines of the European Society of Urogenital Radiology. Eur Radiol 21(5):1102–1110

    Article  PubMed  Google Scholar 

  2. Qin Y, Peng Z, Lou J, Liu H, Deng F, Zheng Y (2009) Discrepancies between clinical staging and pathological findings of operable cervical carcinoma with stage IB-IIB: a retrospective analysis of 818 patients. Aust N Z J Obstet Gynaecol 49(5):542–544

  3. Bhatla N, Aoki D, Sharma DN, Sankaranarayanan R (2018) Cancer of the cervix uteri. Int J Gynecol Obstet 143(Suppl 2):22–36

  4. Young P, Daniel B, Sommer G, Kim B, Herfkens R (2012) Intravaginal gel for staging of female pelvic cancers--preliminary report of safety, distention, and gel-mucosal contrast during magnetic resonance examination. J Comput Assist Tomogr 36(2):253

  5. Van Hoe L, Vanbeckevoort D, Oyen R, Itzlinger U, Vergote I (1999) Cervical carcinoma: optimized local staging with intravaginal contrast-enhanced MR imaging--preliminary results. Radiology 213(2):608–611

    Article  PubMed  Google Scholar 

  6. Akata D, Kerimoglu U, Hazirolan T et al (2005) Efficacy of transvaginal contrast-enhanced MRI in the early staging of cervical carcinoma. Eur Radiol 15(8):1727–1733. https://doi.org/10.1007/s00330-005-2645-9

  7. Park JJ, Kim CK, Park SY, Park BK (2015) Parametrial invasion in cervical cancer: fused T2-weighted imaging and high-b-value diffusion-weighted imaging with background body signal suppression at 3 T. Radiology 274(3):734–741. https://doi.org/10.1148/radiol.14140920

    Article  PubMed  Google Scholar 

  8. Shin YR, Rha SE, Choi BG, Oh SN, Park MY, Byun JY (2013) Uterine cervical carcinoma: a comparison of two- and three-dimensional T2-weighted turbo spin-echo MR imaging at 3.0 T for image quality and local-regional staging. Eur Radiol 23(4):1150–1157. https://doi.org/10.1007/s00330-012-2603-2

    Article  CAS  PubMed  Google Scholar 

  9. Hori M, Kim T, Onishi H et al (2011) Uterine tumors: comparison of 3D versus 2D T2-weighted turbo spin-echo MR imaging at 3.0 T—initial experience. Radiology 258(1):154–163

    Article  PubMed  Google Scholar 

  10. Hwang J, Hong SS, Kim HJ et al (2018) Reduced field-of-view diffusion-weighted MRI in patients with cervical cancer. Br J Radiol 91(1087):20170864

  11. Moribata Y, Kido A, Fujimoto K et al (2017) Feasibility of computed diffusion weighted imaging and optimization of b-value in cervical cancer. Magn Reson Med Sci 16(1):66–72

    Article  PubMed  Google Scholar 

  12. Blackledge M, Leach M, Collins D, Koh D (2011) Computed diffusion-weighted MR imaging may improve tumor detection. Radiology 261(2):573–558

    Article  PubMed  Google Scholar 

  13. Signorelli M, Guerra L, Montanelli L et al (2011) Preoperative staging of cervical cancer: is 18-FDG-PET/CT really effective in patients with early stage disease? Gynecol Oncol 123(2):236–240

  14. Berek JS, Matsuo K, Grubbs BH (2019) Multidisciplinary perspectives on newly revised 2018 FIGO staging of cancer of the cervix uteri. J Gynecol Oncol 30(2):40

    Article  Google Scholar 

  15. Bhatla N, Aoki D, Sharma DN, Sankaranarayanan R (2019) Corrigendum to “Revised FIGO stagingfor carcinoma of the cervix uteri”. Int J Gynecol Obstet 145:129–135

    Article  Google Scholar 

  16. Lee SI, Atri M (2019) 2018 FIGO staging system for uterine cervical cancer: enter cross-sectional imaging. Radiology 292(1):15–24

    Article  PubMed  Google Scholar 

  17. Hricak H, Gatsonis C, Chi DS et al (2005) Role of imaging in pretreatment evaluation of early invasive cervical cancer: results of the intergroup study American College of Radiology Imaging Network 6651-Gynecologic Oncology Group 183. Am J Clin Oncol 23(36):9329–9337

    Article  Google Scholar 

  18. Xiao M, Yan B, Li Y, Lu J, Qiang J (2020) Diagnostic performance of MR imaging in evaluating prognostic factors in patients with cervical cancer: a meta-analysis. Eur Radiol 30(3):1405–1418

    Article  PubMed  Google Scholar 

  19. Thomeer MG, Gerestein C, Spronk S, van Doorn HC, van der Ham E, Hunink MG (2013) Clinical examination versus magnetic resonance imaging in the pretreatment staging of cervical carcinoma:systematic review and meta-analysis. Eur Radiol 23:2005–2018

    Article  PubMed  Google Scholar 

  20. Woo S, Suh CH, Kim SY, Cho JY, Kim SH (2018) Magnetic resonance imaging for detection of parametrial invasionin cervical cancer: an updated systematic reviewand meta-analysis of the literature between 2012 and 2016. Eur Radiol 28(2):530–541

    Article  PubMed  Google Scholar 

  21. Epstein E, Testa A, Gaurilcikas A et al (2013) Early-stage cervical cancer: tumor delineation by magnetic resonance imaging and ultrasound - a European multicenter trial. Gynecol Oncol 128(3):449–453

    Article  PubMed  Google Scholar 

  22. Choi HJ, Ju W, Myung SK, Kim Y (2010) Diagnostic performance of computer tomography, magnetic resonance imaging, and positron emission tomography or positron emission tomography/computer tomography for detection of metastatic lymph nodes in patients with cervical cancer: meta-analysis. Cancer Sci 101(6):1471–1479

    Article  CAS  PubMed  Google Scholar 

  23. Liu B, Gao S, Li S (2017) A comprehensive comparison of CT, MRI, positron emission tomography or positron emission tomography/CT, and diffusion weighted imaging-MRI for detecting the lymph nodes metastases in patients with cervical cancer: a meta-analysis based on 67 studies. Gynecol Obstet Invest 82(3):209–222

    Article  CAS  PubMed  Google Scholar 

  24. Koh WJ, Abu-Rustum NR, Bean S et al (2019) Cervical Cancer, Version 3. 2019, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 17(1):64–84

    Article  CAS  PubMed  Google Scholar 

  25. Marth C, Landoni F, Mahner S, McCormack M, Gonzalez-Martin A, Colombo N (2017) Cervical cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 28(suppl_4):iv72–iv83

    Article  CAS  PubMed  Google Scholar 

  26. Bentivegna E, Gouy S, Maulard A, Chargari C, Leary A, Morice P (2016) Oncological outcomes after fertility-sparing surgery for cervical cancer: a systematic review. Lancet Oncol 17(6):e240–e253

    Article  PubMed  Google Scholar 

  27. Slama J, Cerny A, Dusek L et al (2016) Results of less radical fertility-sparing procedures with omitted parametrectomy for cervical cancer: 5 years of experience. Gynecol Oncol 142:401–404

    Article  PubMed  Google Scholar 

  28. Plante M, Renaud MC, Sebastianelli A, Gregoire J (2017) Simple vaginal trachelectomy: a valuable fertility-preserving option in early-stage cervical cancer. Int J Gynecol Cancer 27:1021–1027

    Article  PubMed  Google Scholar 

  29. Póka R, Molnár S, Daragó P et al (2017) Intention-to-treat analysis of radical trachelectomy for early-stage cervical cancer with special reference to oncologic failures: single-institutional experience in Hungary. Int J Gynecol Cancer 27:1438–1445

    Article  PubMed  Google Scholar 

  30. Tomao F, Maruccio M, Preti EP et al (2017) Conization in early stage cervical cancer: pattern of recurrence in a 10-year single-institution experience. Int J Gynecol Cancer 27:1001–1008

    Article  PubMed  Google Scholar 

  31. Zhang Q, Li W, Kanis MJ et al (2017) Oncologic and obstetrical outcomes with fertility-sparing treatment of cervical cancer: a systematic review and meta-analysis. Oncotarget. 8:46580–46592

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bentivegna E, Maulard A, Pautier P et al (2016) Fertilityresults and pregnancyoutcomesafter conservative treatment of cervical cancer: a systematic review of the Literature. Fertil Steril 106(5):1195–1211.e5. https://doi.org/10.1016/j.fertnstert.2016.06.032

    Article  PubMed  Google Scholar 

  33. Woo S, Moon MH, Cho JY, Kim SH, Kim SY (2019) Diagnostic performance of MRI for assessing parametrial invasion in cervical cancer: a head-to-head comparison between oblique and true axial T2-weighted images. Korean J Radiol 20(3):378–384

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lakhman Y, Akin O, Park KJ et al (2013) Stage IB1 cervical cancer: role of preoperative MR imaging in selection of patients for fertility-sparing radical trachelectomy. Radiology 269(1):149–158. https://doi.org/10.1148/radiol.13121746

    Article  PubMed  Google Scholar 

  35. Downey K, Attygalle AD, Morgan VA et al (2016) Comparison of optimised endovaginal vs external array coil T2-weighted and diffusion-weighted imaging techniques for detecting suspected early stage (IA/IB1) uterine cervical cancer. Eur Radiol 26:941–950

    Article  PubMed  Google Scholar 

  36. Li X, Wang L, Li Y, Song P (2017) The value of diffusion-weighted imaging in combination with conventional magnetic resonance imaging for improving tumor detection for early cervical carcinoma treated with fertility-sparing surgery. Int J Gynecol Cancer 27(8):1761–1768

    Article  PubMed  Google Scholar 

  37. DeSouza NM, Rockall A, Freeman S (2016) Functional MR imaging in gynecologic cancer. Magn Reson Imaging Clin N Am 24(1):205–222

    Article  PubMed  Google Scholar 

  38. Noël P, Dubé M, Plante M, St-Laurent G (2014) Early cervical carcinoma and fertility-sparing treatment options: MR imaging as a tool in patient selection and a follow-up modality. Radiographics 34(4):1099–1119

    Article  PubMed  Google Scholar 

  39. Rockall AG, Qureshi M, Papadopoulou I et al (2016) Role of imaging in fertility-sparing treatment of gynecologic malignancies. Radiographics 36(7):2214–2233

    Article  PubMed  Google Scholar 

  40. McEvoy SH, Nougaret S, Abu-Rustum NR et al (2017) Fertility-sparing for young patients with gynecologic cancer: how MRI can guide patient selection prior to conservative management. Abdom Radiol (NY) 42(10):2488–2512

    Article  Google Scholar 

  41. Huang J-W, Song J-C, Chen T, Yang M, Ma Z-L (2019) Making the invisible visible: improving detectability of MRI-invisible residual cervical cancer after conisation by DCE-MRI. Clin Radiol 74(2):166.e15–166.e21

    Article  Google Scholar 

  42. Sala E, Rockall AG, Freeman SJ, Mitchell DG, Reinhold C (2013) The added role of MR imaging in treatment stratification of patients with gynecologic malignancies: what the radiologist needs to know. Radiology 266(3):717

    Article  PubMed  Google Scholar 

  43. Raithatha A, Papadopoulou I, Stewart V, Barwick TD, Rockall AG, Bharwani N (2016) Cervical cancer staging: a resident’s primer: women’s imaging. Radiographics 36(3):933–934

    Article  PubMed  Google Scholar 

  44. Zhang A, Song J, Ma Z, Chen T. (2020) Application of apparent diffusion coefficient values derived from diffusion-weighted imaging for assessing different sized metastatic lymph nodes in cervical cancers. Acta Radiol 61(6):848–855. https://doi.org/10.1177/0284185119879686

  45. Qi Y-F, He Y-L, Lin C-Y et al (2020) Diffusion-weighted imaging of cervical cancer: feasibility of ultra-high b-value at 3T. Eur J Radiol 124:108779

    Article  PubMed  Google Scholar 

  46. Ruan J, Zhang Y, Ren H (2018) Meta-analysis of PET/CT detect lymph nodes metastases of cervical cancer. Open Med (Wars) 13:436–442

    Article  Google Scholar 

  47. Cibula D, Potter R, Planchamp F (2018) The European Society of Gynaecological Oncology/European Society for Radiotherapy andOncology/European Society of Pathology guidelines forthe management of patients with cervical cancer. Int J Gynecol Cancer 28(4):641–655

    Article  PubMed  Google Scholar 

  48. Cino J, Annunziata CM Beriwal S et al (2019) Radiation Therapy for Cervical Cancer: Executive Summary of an ASTRO Clinical Practice Guideline. Pract Radiat Oncol 10(4):220–234. https://doi.org/10.1016/j.prro.2020.04.002

  49. Gandy N, Arshad AM, Park W-HE, Rockall AG, Barwick TD (2019) FDG-PET imaging in cervical cancer. Semin Nucl Med 49(6):461–470

  50. Vincens E, Balleyguier C, Rey A et al (2008) Accuracy of magnetic resonance imaging in predicting residual disease in patients treated for stage IB2/II cervical carcinoma with chemoradiation therapy : correlation of radiologic findings with surgicopathologic results. Cancer 113(8):2158–2165

    Article  PubMed  Google Scholar 

  51. Gui B, Miccò M, Valentini AL et al (2019) Prospective multimodal imaging assessment of locally advanced cervical cancer patients administered by chemoradiation followed by radical surgery-the “PRICE” study 2: role of conventional and DW-MRI. Eur Radiol 29(4):2045–2057

    Article  CAS  PubMed  Google Scholar 

  52. Thomeer MG, Vandecaveye V, Braun et al (2019) Evaluation of T2-W MR imaging and diffusion-weighted imaging for the early post-treatment local response assessment of patients treated conservatively for cervical cancer: a multicentre study. Eur Radiol 29(1):309–318

    Article  PubMed  Google Scholar 

  53. Jalaguier-Coudray A, Villard-Mahjoub R, Delouche A (2017) Value of dynamic contrastenhanced and diffusionweighted MR imaging in the detection of pathologic complete response in cervical cancer after neoadjuvant therapy: a retrospective observational study. Radiology 284(2):432–442

    Article  PubMed  Google Scholar 

  54. Levy A, Caramella C, Chargari C et al (2011) Accuracy of diffusion-weighted echo-planar MR imaging and ADC mapping in the evaluation of residual cervical carcinoma after radiation therapy. Gynecol Oncol 123:110–115

    Article  PubMed  Google Scholar 

  55. Schreuder SM, Lensing R, Stoker J, Bipat S (2015) Monitoring treatment response in patients undergoing chemoradiotherapy for locally advanced uterine cervical cancer by additional diffusion-weighted imaging: a systematic review. J Magn Reson Imaging 42(3):572–594

    Article  PubMed  Google Scholar 

  56. Hameeduddin A, and Sahdev* A (2015) Diffusion-weighted imaging and dynamic contrast-enhanced MRI in assessing response and recurrent disease in gynaecological malignancies. Cancer Imaging 15:3 https://doi.org/10.1186/s40644-015-0037-1

  57. Grigsby PW, Siegel BA, Dehdashti F et al (2004) Posttherapy [18F] fluorodeoxyglucose positron emission tomography in carcinoma of the cervix: response and outcome. J Clin Oncol 22(11):2167–2171

    Article  PubMed  Google Scholar 

  58. Onal C, Reyhan M, Guler OC, Yapar AF (2014) Treatment outcomes of patients with cervical cancer with complete metabolic responses after definitive Chemoradiotherapy. Eur J Nucl Med Mol Imaging 41(7):1336–1342

    Article  CAS  PubMed  Google Scholar 

  59. Beriwal S, Kannan N, Sukumvanich P et al (2012) Complete metabolic response after definitive radiation therapy for cervical cancer: patterns and factors predicting for recurrence. Gynecol Oncol 127(2):303–306

    Article  PubMed  Google Scholar 

  60. Lucas R, Lopes Dias J, Cunha TM (2015) Added value of diffusion-weighted MRI in detection of cervical cancer recurrence: comparison with morphologic and dynamic contrast-enhanced MRI sequences. Diagn Interv Radiol. 21(5):368–375

  61. Friedlander M, Grogan M, U.S. Preventative Services Task Force (2002) Guidelines for the treatment of recurrent and metastatic cervical cancer. Oncologist. 7(4):342–347

    Article  PubMed  Google Scholar 

  62. O’Shannassy SJ, Brown KGM, Steffens D et al (2020) Referral patterns and outcomes of a highly specialised pelvic exenteration multidisciplinary team meeting . A retrospective cohort study. Eur J Surg Oncol 46(6):1138–1143

    Article  PubMed  Google Scholar 

  63. Laporte GA, Zanini LAG, Zanvettor PH (2020) Guidelines of the Brazilian Society of Oncologic Surgery for pelvic exenteration in the treatment of cervical cancer. J Surg Oncol 121(5):718–729

    PubMed  Google Scholar 

  64. Kim JH, Kim CK, Park BK, Park SY, Huh SJ, Kim B (2012) Dynamic contrast-enhanced 3-T MR imaging in before and after concurrent chemoradiotherapy. Eur Radiol 22(11):2533–2539. https://doi.org/10.1007/s00330-012-2504-4

    Article  PubMed  Google Scholar 

  65. Gui B, Valentini AL, Miccò M et al (2016) Cervical cancer response to neoadjuvant chemoradiotherapy: MRI assessment compared with surgery. Acta Radiol 57(9):1123–1131

    Article  PubMed  Google Scholar 

  66. Oldan JD, Shah SN, Rose TL (2017) Applications of PET/MR imaging in urogynecologic and genitourinary cancers. Magn Reson Imaging Clin N Am 25(2):335–350

    Article  PubMed  Google Scholar 

  67. Vargas HA, Burger IA, Donati OF et al (2013) Magnetic resonance imaging/positron emission tomography provides a roadmap for surgical planning and serves as a predictive biomarker in patients with recurrent gynecological cancers undergoing pelvic exenteration. Int J Gynecol Cancer 23:1512e1519. 20

    Article  Google Scholar 

  68. Barwick TD, Taylor A, Rockall A (2013) Functional imaging to predict tumor response in locally advanced cervical cancer. Curr Oncol Rep 15(6):549–558

    Article  PubMed  Google Scholar 

  69. Sawicki LM, Kirchner J, Grueneisen J et al (2018) Comparison of (18)F-FDG PET/MRI and MRI alone for whole-body staging and potential impact on therapeutic management of women with suspected recurrent pelvic cancer: a follow-up study. Eur J Nucl Med Mol Imaging 45(4):622–629

    Article  CAS  PubMed  Google Scholar 

  70. Sarabhai T, Schaarschmidt BM, Wetter A et al (2018) Comparison of 18 F-FDG PET/MRI and MRI for pre-therapeutic tumor staging of patients with primary cancer of the uterine cervix. Eur J Nucl Med Mol Imaging 45(1):67–76. https://doi.org/10.1007/s00259-017-3809-y

  71. Nie J, Zhang J, Gao J et al (2017) Diagnostic role of 18F-FDG PET/MRI in patients with gynecological malignancies of the pelvis: a systematic review and meta-analysis. PLoS One 12(5):e0175401. https://doi.org/10.1371/journal.pone.0175401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zheng M, Xie D, Pan C, Xu Y, Yu W (2018) Diagnostic value of 18F-FDG PET/MRI in recurrent pelvis malignancies of female patients: a systematic review and meta-analysis. Nucl Med Commun 39(6):479–485. https://doi.org/10.1097/MNM.0000000000000839

    Article  PubMed  Google Scholar 

  73. Nagasaka T et al (2012) The mean apparent diffusion coefficient value (ADCmean) on primary cervical cancer is a predictive marker for disease recurrence. Gynecol Oncol 127:478–483

    Article  PubMed  Google Scholar 

  74. Nakamura K, Joja I, Kodama J, Hongo A, Hiramatsu Y (2012) Measurement of SUVmax plus ADCmin of the primary tumour is a predictor of prognosis in patients with cervical cancer. Eur J Nucl Med Mol Imaging 39:283–290

    Article  PubMed  Google Scholar 

  75. Yildirim BA, Onal C, Erbay G et al (2019) Prognostic values of SUVmax and ADCmean of the primary tumor in cervical cancer patients treated with definitive chemoradiotherapy. J Obstet Gynaecol 39:224–230

    Article  CAS  Google Scholar 

  76. Gong J, Wang N, Bian L et al (2019) Cervical cancer evaluated with integrated 18F-FDG PET/MR. Oncol Lett 18:1815–1823

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Gillies JR, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278(2):563–577. https://doi.org/10.1148/radiol.2015151169

    Article  PubMed  Google Scholar 

  78. Rizzo S, Botta F, Raimondi S et al (2018) Radiomics: the facts and the challenges of image analysis. Eur Radiol Exp 2(1):36

  79. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts H (2018) Artificial intelligence in radiology. Nat Rev Cancer 18:500–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li Z, Li H, Wang S et al (2019) MR-based radiomics nomogram of cervical cancer in prediction of the lymph-vascular space invasion preoperatively. J Magn Reson Imaging 49(5):1420–1426

  81. Kan Y, Dong D, Zhang Y et al (2019) Radiomic signature as a predictive factor for lymph node metastasis in early-stage cervical cancer. J Magn Reson Imaging 49(1):304–310

  82. Meng J, Zhu L, Zhu L et al (2017) Whole-lesion ADC histogram and texture analysis in predicting recurrence of cervical cancer treated with CCRT. Oncotarget 8(54):92442–92453. Published 2017 Sep 28. https://doi.org/10.18632/oncotarget.21374

    Article  PubMed  PubMed Central  Google Scholar 

  83. Bowen SR, Yuh WTC, Hippe DS et al (2018) Tumor radiomic heterogeneity: multiparametric functional imaging to characterize variability and predict response following cervical cancer radiation therapy. J Magn Reson Imaging 47(5):1388–1396. https://doi.org/10.1002/jmri.25874

    Article  PubMed  Google Scholar 

  84. Ciolina M, Vinci V, Villani L et al (2019) Texture analysis versus conventional MRI prognostic factors in predicting tumor response to neoadjuvant chemotherapy in patients with locally advanced cancer of the uterine cervix. Radiol Med 124(10):955–964

    Article  PubMed  Google Scholar 

  85. Ai Y, Zhu H, Xie C, Jin X (2020) Radiomics in cervical cancer: current applications and future potential. Crit Rev Oncol Hematol 152:102985. https://doi.org/10.1016/j.critrevonc.2020.102985

    Article  PubMed  Google Scholar 

  86. Zwanenburg A, Vallières M, Abdalah MA et al (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotypin. Radiology 295(2):328–338. https://doi.org/10.1148/radiol.2020191145

    Article  PubMed  Google Scholar 

  87. Rizzo S, Summers P, Raimondi S et al (2011) Diffusion-weighted MR imaging in assessing cervical tumour response to nonsurgical therapy. Radiol Med 116(5):766–780

    Article  CAS  PubMed  Google Scholar 

  88. Zhang Y, Chen JY, Xie CM et al (2011) Diffusion-weighted magnetic resonance imaging for prediction of response of advanced cervical cancer to chemoradiation. J Comput Assist Tomogr 35(1):102–107

    Article  PubMed  Google Scholar 

  89. Fu C, Bian D, Liu F, Feng X, Du W, Wang X (2012) The value of diffusion-weighted magnetic resonance imaging in assessing the response of locally advanced cervical cancer to neoadjuvant chemotherapy. Int J Gynecol Cancer 22(6):1037–1043

    Article  PubMed  Google Scholar 

  90. Kim SC, Gillet VG, Feldman S et al (2013) Validation of claims-based algorithms for identification of high-grade cervical dysplasia and cervical cancer. Pharmacoepidemiol Drug Saf 22(11):1239–1244

    Article  PubMed  Google Scholar 

  91. Kuang F, Yan Z, Wang J, Rao Z (2014) The value of diffusion-weighted MRI to evaluate the response to radiochemotherapy for cervical cancer. Magn Reson Imaging 32(4):342–349

    Article  PubMed  Google Scholar 

  92. Fu C, Feng X, Bian D et al (2014) Simultaneous changes of magnetic resonance diffusion-weighted imaging and pathological microstructure in locally advanced cervical cancer caused by neoadjuvant chemotherapy. J Magn Reson Imaging 42(2):427–435

  93. Ju FJ (2016) Evaluation of the efficacy of chemoradiotherapy in cervical cancer using diffusion-weighted imaging and apparent diffusion coefficient. Onco Targets Ther 13(9):7555–7561

    Article  Google Scholar 

  94. Rizzo S, Buscarino V, Origgi D et al (2016) Evaluation of diffusion-weighted imaging (DWI) and MR spectroscopy (MRS) as early response biomarkers in cervical cancer patients. Radiol Med 121(11):838–846

    Article  PubMed  Google Scholar 

  95. Gui B, Miccò M, Valentini AL et al (2018) Prospective multimodal imaging assessment of locally advanced cervical cancer patients administered by chemoradiation followed by radical surgery-the "PRICE" study 2: role of conventional and DW-MRI. Eur Radiol 29(4):2045–2057

  96. Valentini AL, Miccò M, Gui B et al (2018) The PRICE study: The role of conventional and diffusion-weighted magnetic resonance imaging in assessment of locally advanced cervical cancer patients administered by chemoradiation followed by radical surgery. Eur Radiol 28(6):2425–2435

    Article  CAS  PubMed  Google Scholar 

  97. Ho JC, Allen PK, Bhosale PR et al (2017) Diffusion-weighted magnetic resonance imaging as a predictor of outcome in cervical cancer after chemoradiation. Int J Radiat Oncol Biol Phys 97(3):546–553

    Article  PubMed  Google Scholar 

  98. Gladwish A, Milosevic M, Fyles A et al (2016) Association of apparent diffusion coefficient with disease recurrence in patients with locally advanced cervical cancer treated with radical chemotherapy and radiation therapy. Radiology 279(1):158–166

    Article  PubMed  Google Scholar 

  99. Onal C, Erbay G, Guler OC (2016) Treatment response evaluation using the mean apparent diffusion coefficient in cervical cancer patients treated with definitive chemoradiotherapy. J Magn Reson Imaging 44(4):1010–1019

    Article  PubMed  Google Scholar 

  100. Zhou W, Yang X, Dai Y, Wu Q, He G, Yin G (2016) Survey of cervical cancer survivors regarding quality of life and sexual function. J Cancer Res Ther 12(2):938–944

    Article  PubMed  CAS  Google Scholar 

  101. Himoto Y, Kido A, Fujimoto K et al (2015) MR imaging-based evaluation of morphological changes in the uterus and ovaries of patients following neoadjuvant chemotherapy for cervical cancer. Magn Reson Med Sci 14(1):65–72

    Article  CAS  PubMed  Google Scholar 

  102. Heo SH, Shin SS, Kim JW et al (2013) Pre-treatment diffusion-weighted MR imaging for predicting tumor recurrence in uterine cervical cancer treated with concurrent chemoradiation: value of histogram analysis of apparent diffusion coefficients. Korean J Radiol 14(4):616–625

    Article  PubMed  PubMed Central  Google Scholar 

  103. Nakamura K, Kajitani S, Joja I et al (2013) The posttreatment mean apparent diffusion coefficient of primary tumor is superior to pretreatment ADC mean of primary tumor as a predictor of prognosis with cervical cancer. Cancer Med 2(4):519–525

    Article  PubMed  PubMed Central  Google Scholar 

  104. Miccò M, Vargas HA, Burger IA et al (2014) Combined pre-treatment MRI and 18F-FDG PET/CT parameters as prognostic biomarkers in patients with cervical cancer. Eur J Radiol 83(7):1169–1176

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The statistical analysis was carried out by Alessandro Sindoni MD, Department of Public Health and Infectious Diseases Sapienza University of Rome. The Committee would like to thank the members of ESUR Female Pelvic Imaging Working Group who contributed to the survey.

Yulia Lakhman was supported by the National Cancer Institute Grant N0 P30CA008748 (paid to Institution).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Manganaro.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Lucia Manganaro MD.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

Alessandro Sindoni kindly provided statistical advice for this manuscript.

Informed consent

Written informed consent was not required for this study because this manuscript is a special report regarding Staging, recurrence and follow up of uterine cervical cancer using MRI.

Ethical approval

Institutional Review Board approval was not required because this is a special report on Staging, recurrence and follow up of uterine cervical cancer using MRI.

Study subjects or cohorts overlap

N/A

This document represents an update of ESUR guidelines on the basis of new FIGO Classification (2018).

Methodology

• Retrospective

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Affiliation 1 was incorrect.

Supplementary Information

ESM 1

(DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manganaro, L., Lakhman, Y., Bharwani, N. et al. Staging, recurrence and follow-up of uterine cervical cancer using MRI: Updated Guidelines of the European Society of Urogenital Radiology after revised FIGO staging 2018. Eur Radiol 31, 7802–7816 (2021). https://doi.org/10.1007/s00330-020-07632-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-020-07632-9

Keywords

Navigation