Skip to main content

Advertisement

Log in

Research progress on mechanism and dosimetry of brainstem injury induced by intensity-modulated radiotherapy, proton therapy, and heavy ion radiotherapy

  • Oncology
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Radiotherapy (RT) is an effective method for treating head and neck cancer (HNC). However, RT may cause side effects during and after treatment. Radiation-induced brainstem injury (BSI) is often neglected due to its low incidence and short survival time and because it is indistinguishable from intracranial tumor progression. It is currently believed that the possible mechanism of radiation-induced BSI includes increased expression of vascular endothelial growth factor and damage of vascular endothelial cells, neurons, and glial cells as well as an inflammatory response and oxidative stress. At present, it is still difficult to avoid BSI even with several advanced RT techniques. Intensity-modulated radiotherapy (IMRT) is the most commonly used therapeutic technique in the field of RT. Compared with early conformal therapy, it has greatly reduced the injury to normal tissues. Proton beam radiotherapy (PBT) and heavy ion radiotherapy (HIT) have good dose distribution due to the presence of a Bragg peak, which not only results in better control of the tumor but also minimizes the dose to the surrounding normal tissues. There are many clinical studies on BSI caused by IMRT, PBT, and HIT. In this paper, we review the mechanism, dosimetry, and other aspects of BSI caused by IMRT, PBT, and HIT.

Key Points

• Enhanced MRI imaging can better detect radiation-induced BSI early.

• This article summarized the dose constraints of brainstem toxicity in clinical studies using different techniques including IMRT, PBT, and HIT and recommended better dose constraints pattern to clinicians.

The latest pathological mechanism of radiation-induced BSI and the corresponding advanced treatment methods will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

aVXX:

Absolute volume at dose XXGy

BBB:

Blood-brain barrier

BSI:

Brainstem injury

CGE:

Cobalt gray equivalent

CNS:

Central nervous system

COXs:

Cyclooxygenases

CT:

Computed tomography

Dmax:

The maximum point dose of brainstem

HIT:

Heavy ion radiotherapy

HNC:

Head and neck cancer

IL:

Interleukin

IMRT:

Intensity-modulated radiotherapy

LOXs:

Lipoxygenases

MRI:

Magnetic resonance imaging

NADPH:

Nicotinamide adenine dinucleotide phosphate

NOS:

Nitric oxide synthase

NPC:

Nasopharyngeal carcinoma

OAR:

Organs at risk

OS:

Reactive oxygen species

PBT:

Proton beam therapy

RBE:

Relative biologic effectiveness

RNS:

Reactive nitrogen species

RT:

Radiotherapy

SVZ:

Subependymal ventricular zone

T1WI:

T1-weighted image

T2WI:

T2-weighted image

References

  1. Ferlay J, Soerjomataram I, Dikshit R et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386

    Article  CAS  PubMed  Google Scholar 

  2. Harari PM, Harris J, Kies MS et al (2014) Postoperative chemoradiotherapy and cetuximab for high-risk squamous cell carcinoma of the head and neck: Radiation Therapy Oncology Group RTOG-0234. J Clin Oncol 32:2486–2495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lok BH, Jiang G, Gutiontov S et al (2015) Palliative head and neck radiotherapy with the RTOG 8502 regimen for incurable primary or metastatic cancers. Oral Oncol 51:957–962

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cooper JS, Zhang Q, Pajak TF et al (2012) Long-term follow-up of the RTOG 9501/intergroup phase III trial: postoperative concurrent radiation therapy and chemotherapy in high-risk squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 84:1198–1205

    Article  PubMed  PubMed Central  Google Scholar 

  5. Strojan P, Hutcheson KA, Eisbruch A et al (2017) Treatment of late sequelae after radiotherapy for head and neck cancer. Cancer Treat Rev 59:79–92

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bray FN, Simmons BJ, Wolfson AH, Nouri K (2016) Acute and chronic cutaneous reactions to ionizing radiation therapy. Dermatol Ther (Heidelb) 6:185–206

    Article  Google Scholar 

  7. Tseng BP, Giedzinski E, Izadi A et al (2014) Functional consequences of radiation-induced oxidative stress in cultured neural stem cells and the brain exposed to charged particle irradiation. Antioxid Redox Signal 20:1410–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mohan R, Grosshans D (2017) Proton therapy - present and future. Adv Drug Deliv Rev 109:26–44

    Article  CAS  PubMed  Google Scholar 

  9. Hu M, Jiang L, Cui X, Zhang J, Yu J (2018) Proton beam therapy for cancer in the era of precision medicine. J Hematol Oncol 11:136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fung V, Calugaru V, Bolle S et al (2018) Proton beam therapy for skull base chordomas in 106 patients: a dose adaptive radiation protocol. Radiother Oncol 128:198–202

    Article  PubMed  Google Scholar 

  11. Lane AM, Kim IK, Gragoudas ES (2015) Long-term risk of melanoma-related mortality for patients with uveal melanoma treated with proton beam therapy. JAMA Ophthalmol 133:792–796

    Article  PubMed  Google Scholar 

  12. Demizu Y, Mizumoto M (2017) Proton beam therapy for bone sarcomas of the skull base and spine: a retrospective nationwide multicenter study in Japan. Cancer Sci 108:972–977

  13. Papakostas TD, Lane AM, Morrison M, Gragoudas ES, Kim IK (2017) Long-term outcomes after proton beam irradiation in patients with large choroidal melanomas. JAMA Ophthalmol 135:1191–1196

    Article  PubMed  PubMed Central  Google Scholar 

  14. Palm A, Johansson KA (2007) A review of the impact of photon and proton external beam radiotherapy treatment modalities on the dose distribution in field and out-of-field; implications for the long-term morbidity of cancer survivors. Acta Oncol 46:462–473

    Article  PubMed  Google Scholar 

  15. Romesser PB, Cahlon O, Scher E et al (2016) Proton beam radiation therapy results in significantly reduced toxicity compared with intensity-modulated radiation therapy for head and neck tumors that require ipsilateral radiation. Radiother Oncol 118:286–292

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kanai T, Endo M, Minohara S et al (1999) Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy. Int J Radiat Oncol Biol Phys 44:201–210

    Article  CAS  PubMed  Google Scholar 

  17. Koto M, Hasegawa A, Takagi R et al (2016) Evaluation of the safety and efficacy of carbon ion radiotherapy for locally advanced adenoid cystic carcinoma of the tongue base. Head Neck 38(Suppl 1):E2122–E2126

    Article  PubMed  Google Scholar 

  18. Smart D (2017) Radiation toxicity in the central nervous system: mechanisms and strategies for injury reduction. Semin Radiat Oncol 27:332–339

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sun PY, Chen YH, Feng XB, Yang CX, Wu F, Wang RS (2018) High-dose static and dynamic intensity-modulated radiotherapy combined with chemotherapy for patients with locally advanced nasopharyngeal carcinoma improves survival and reduces brainstem toxicity. Med Sci Monit 24:8849–8859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Siddiqui F, Movsas B (2017) Management of radiation toxicity in head and neck cancers. Semin Radiat Oncol 27:340–349

    Article  PubMed  Google Scholar 

  21. Yang Y, Liu Y, Xie D, Su D, Chen M (2002) Delayed radiation injury of brain stem after radiotherapy in nasopharyngeal carcinoma. Chin J Radiat Oncol 11:5–17

    Google Scholar 

  22. Ciura K, McBurney M, Nguyen B et al (2011) Effect of brain stem and dorsal vagus complex dosimetry on nausea and vomiting in head and neck intensity-modulated radiation therapy. Med Dosim 36:41–45

    Article  PubMed  Google Scholar 

  23. Mayo C, Yorke E, Merchant TE (2010) Radiation associated brainstem injury. Int J Radiat Oncol Biol Phys 76:S36–S41

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pena LA, Fuks Z, Kolesnick RN (2000) Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res 60:321–327

    CAS  PubMed  Google Scholar 

  25. Li YQ, Chen P, Jain V, Reilly RM, Wong CS (2004) Early radiation-induced endothelial cell loss and blood-spinal cord barrier breakdown in the rat spinal cord. Radiat Res 161:143–152

    Article  CAS  PubMed  Google Scholar 

  26. Tofilon PJ, Fike JR (2000) The radioresponse of the central nervous system: a dynamic process. Radiat Res 153:357–370

    Article  CAS  PubMed  Google Scholar 

  27. Li YQ, Chen P, Haimovitz-Friedman A, Reilly RM, Wong CS (2003) Endothelial apoptosis initiates acute blood-brain barrier disruption after ionizing radiation. Cancer Res 63:5950–5956

    CAS  PubMed  Google Scholar 

  28. Li YQ, Ballinger JR, Nordal RA, Su ZF, Wong CS (2001) Hypoxia in radiation-induced blood-spinal cord barrier breakdown. Cancer Res 61:3348–3354

    CAS  PubMed  Google Scholar 

  29. Schuller BW, Binns PJ, Riley KJ, Ma L, Hawthorne MF, Coderre JA (2006) Selective irradiation of the vascular endothelium has no effect on the survival of murine intestinal crypt stem cells. Proc Natl Acad Sci U S A 103:3787–3792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lyubimova N, Hopewell JW (2004) Experimental evidence to support the hypothesis that damage to vascular endothelium plays the primary role in the development of late radiation-induced CNS injury. Br J Radiol 77:488–492

    Article  CAS  PubMed  Google Scholar 

  31. Tanigawa K, Mizuno K, Kamenohara Y, Unoki T, Misono S, Inoue H (2019) Effect of bevacizumab on brain radiation necrosis in anaplastic lymphoma kinase-positive lung cancer. Respirol Case Rep 7:e00454

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gonzalez J, Kumar AJ, Conrad CA, Levin VA (2007) Effect of bevacizumab on radiation necrosis of the brain. Int J Radiat Oncol Biol Phys 67:323–326

    Article  CAS  PubMed  Google Scholar 

  33. Balentova S, Adamkov M (2015) Molecular, cellular and functional effects of radiation-induced brain injury: a review. Int J Mol Sci 16:27796–27815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tada E, Yang C, Gobbel GT, Lamborn KR, Fike JR (1999) Long-term impairment of subependymal repopulation following damage by ionizing irradiation. Exp Neurol 160:66–77

    Article  CAS  PubMed  Google Scholar 

  35. Ferrer I, Macaya A, Blanco R et al (1995) Evidence of internucleosomal DNA fragmentation and identification of dying cells in X-ray-induced cell death in the developing brain. Int J Dev Neurosci 13:21–28

    Article  CAS  PubMed  Google Scholar 

  36. Kim JH, Brown SL, Jenrow KA, Ryu S (2008) Mechanisms of radiation-induced brain toxicity and implications for future clinical trials. J Neurooncol 87:279–286

    Article  CAS  PubMed  Google Scholar 

  37. Betlazar C, Middleton RJ, Banati RB, Liu GJ (2016) The impact of high and low dose ionising radiation on the central nervous system. Redox Biol 9:144–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yahyapour R, Motevaseli E, Rezaeyan A et al (2018) Reduction-oxidation (redox) system in radiation-induced normal tissue injury: molecular mechanisms and implications in radiation therapeutics. Clin Transl Oncol 20:975–988. https://doi.org/10.1007/s12094-017-1828-6

  39. Najafi M, Motevaseli E, Shirazi A et al (2018) Mechanisms of inflammatory responses to radiation and normal tissues toxicity: clinical implications. Int J Radiat Biol 94:335–356

    Article  CAS  PubMed  Google Scholar 

  40. Pugin J (2012) How tissue injury alarms the immune system and causes a systemic inflammatory response syndrome. Ann Intensive Care 2:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Frey B, Rückert M, Deloch L et al (2017) Immunomodulation by ionizing radiation-impact for design of radio-immunotherapies and for treatment of inflammatory diseases. Immunol Rev 280:231–248

    Article  CAS  PubMed  Google Scholar 

  42. Wei J, Wang H, Wang H et al (2019) The role of NLRP3 inflammasome activation in radiation damage. Biomed Pharmacother 118:109217

    Article  CAS  PubMed  Google Scholar 

  43. Portnow J, Suleman S, Grossman SA, Eller S, Carson K (2002) A cyclooxygenase-2 (COX-2) inhibitor compared with dexamethasone in a survival study of rats with intracerebral 9L gliosarcomas. Neuro Oncol 4:22–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302:1760–1765

    Article  CAS  PubMed  Google Scholar 

  45. Liao H, Wang H, Rong X, Li E, Xu RH, Peng Y (2017) Mesenchymal stem cells attenuate radiation-induced brain injury by inhibiting microglia pyroptosis. Biomed Res Int 2017:1948985

  46. Lagares A, Ramos A, Alday R et al (2006) Magnetic resonance in moderate and severe head injury: comparative study of CT and MR findings. Characteristics related to the presence and location of diffuse axonal injury in MR. Neurocirugia (Astur) 17:105–118

    Article  CAS  Google Scholar 

  47. Chew BG, Spearman CM, Quigley MR, Wilberger JE (2012) The prognostic significance of traumatic brainstem injury detected on T2-weighted MRI. J Neurosurg 117:722–728

    Article  PubMed  Google Scholar 

  48. Ng SH, Wan YL, Ko SF, Chang JT (1998) MRI of nasopharyngeal carcinoma with emphasis on relationship to radiotherapy. J Magn Reson Imaging 8:327–336

    Article  CAS  PubMed  Google Scholar 

  49. Liu M, Liang S, Liao J, Jin G (2011) Magnetic resonance imaging manifestations of radiation-induced brainstem injury in patients with nasopharyngeal carcinoma after radiotherapy. Chin J Oncol Prev Treat 3:232–235

    Google Scholar 

  50. Liang C, Li G, Huang B et al (1998) MRI findings of radiation encephalopathy of brain stem after radiotherapy for nasopharyngeal cancer. Chin J Radiol 32:533–536

    Google Scholar 

  51. Song T, Liang BL, Huang SQ, Xie BK, Ding ZX, Shen J (2005) Magnetic resonance imaging manifestations of radiation injury in brain stem and cervical spinal cord of nasopharyngeal carcinoma patients after radiotherapy. Ai Zheng 24:357–361

    PubMed  Google Scholar 

  52. Hoppe BS, Stegman LD, Zelefsky MJ et al (2007) Treatment of nasal cavity and paranasal sinus cancer with modern radiotherapy techniques in the postoperative setting--the MSKCC experience. Int J Radiat Oncol Biol Phys 67:691–702

    Article  PubMed  Google Scholar 

  53. Schoenfeld GO, Amdur RJ, Morris CG, Li JG, Hinerman RW, Mendenhall WM (2008) Patterns of failure and toxicity after intensity-modulated radiotherapy for head and neck cancer. Int J Radiat Oncol Biol Phys 71:377–385

    Article  PubMed  Google Scholar 

  54. Jian JJ, Cheng SH, Tsai SY et al (2002) Improvement of local control of T3 and T4 nasopharyngeal carcinoma by hyperfractionated radiotherapy and concomitant chemotherapy. Int J Radiat Oncol Biol Phys 53:344–352

    Article  PubMed  Google Scholar 

  55. Uy NW, Woo SY, Teh BS et al (2002) Intensity-modulated radiation therapy (IMRT) for meningioma. Int J Radiat Oncol Biol Phys 53:1265–1270

    Article  PubMed  Google Scholar 

  56. Yao CY, Zhou GR, Wang LJ et al (2018) A retrospective dosimetry study of intensity-modulated radiotherapy for nasopharyngeal carcinoma: radiation-induced brainstem injury and dose-volume analysis. Radiat Oncol 13:194

  57. Huang XD, Li YC, Chen FP et al (2019) Evolution and dosimetric analysis of MRI-detected brainstem injury following intensity modulated radiotherapy in nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys. https://doi.org/10.1016/j.ijrobp.2019.04.032

  58. Weber DC, Rutz HP, Pedroni ES et al (2005) Results of spot-scanning proton radiation therapy for chordoma and chondrosarcoma of the skull base: the Paul Scherrer Institut experience. Int J Radiat Oncol Biol Phys 63:401–409

    Article  PubMed  Google Scholar 

  59. Nishimura H, Ogino T, Kawashima M et al (2007) Proton-beam therapy for olfactory neuroblastoma. Int J Radiat Oncol Biol Phys 68:758–762

    Article  PubMed  Google Scholar 

  60. Noel G, Habrand JL, Mammar H et al (2001) Combination of photon and proton radiation therapy for chordomas and chondrosarcomas of the skull base: the Centre de Protontherapie D’Orsay experience. Int J Radiat Oncol Biol Phys 51:392–398

    Article  CAS  PubMed  Google Scholar 

  61. Debus J, Hug EB, Liebsch NJ et al (1997) Brainstem tolerance to conformal radiotherapy of skull base tumors. Int J Radiat Oncol Biol Phys 39:967–975

    Article  CAS  PubMed  Google Scholar 

  62. Wenkel E, Thornton AF, Finkelstein D et al (2000) Benign meningioma: partially resected, biopsied, and recurrent intracranial tumors treated with combined proton and photon radiotherapy. Int J Radiat Oncol Biol Phys 48:1363–1370

    Article  CAS  PubMed  Google Scholar 

  63. Shirai K, Fukata K, Adachi A et al (2017) Dose-volume histogram analysis of brainstem necrosis in head and neck tumors treated using carbon-ion radiotherapy. Radiother Oncol 125:36–40

    Article  PubMed  Google Scholar 

  64. Koto M, Hasegawa A, Takagi R et al (2014) Feasibility of carbon ion radiotherapy for locally advanced sinonasal adenocarcinoma. Radiother Oncol 113:60–65

    Article  PubMed  Google Scholar 

  65. Guimas V, Thariat J, Graff-Cailleau P et al (2016) Intensity modulated radiotherapy for head and neck cancer, dose constraint for normal tissue: cochlea vestibular apparatus and brainstem. Cancer Radiother 20:475–483

    Article  CAS  PubMed  Google Scholar 

  66. Paganetti H, Niemierko A, Ancukiewicz M et al (2002) Relative biological effectiveness (RBE) values for proton beam therapy. Int J Radiat Oncol Biol Phys 53:407–421

    Article  PubMed  Google Scholar 

  67. Merchant TE (2013) Clinical controversies: proton therapy for pediatric tumors. Semin Radiat Oncol 23:97–108

    Article  PubMed  PubMed Central  Google Scholar 

  68. Haas-Kogan D, Indelicato D, Paganetti H et al (2018) National Cancer Institute workshop on proton therapy for children: considerations regarding brainstem injury. Int J Radiat Oncol Biol Phys 101:152–168

    Article  PubMed  PubMed Central  Google Scholar 

  69. Indelicato DJ, Flampouri S, Rotondo RL et al (2014) Incidence and dosimetric parameters of pediatric brainstem toxicity following proton therapy. Acta Oncol 53:1298–1304

    Article  CAS  PubMed  Google Scholar 

  70. Koto M, Hasegawa A, Takagi R et al (2014) Risk factors for brain injury after carbon ion radiotherapy for skull base tumors. Radiother Oncol 111:25–29

    Article  PubMed  Google Scholar 

  71. Merchant TE, Boop FA, Kun LE, Sanford RA (2008) A retrospective study of surgery and reirradiation for recurrent ependymoma. Int J Radiat Oncol Biol Phys 71:87–97

    Article  PubMed  Google Scholar 

  72. Bouffet E, Hawkins CE, Ballourah W et al (2012) Survival benefit for pediatric patients with recurrent ependymoma treated with reirradiation. Int J Radiat Oncol Biol Phys 83:1541–1548

    Article  PubMed  Google Scholar 

  73. Shen CJ, Kummerlowe MN, Redmond KJ et al (2018) Re-irradiation for malignant glioma: toward patient selection and defining treatment parameters for salvage. Adv Radiat Oncol 3:582–590

    Article  PubMed  PubMed Central  Google Scholar 

  74. Regnier E, Laprie A, Ducassou A et al (2019) Re-irradiation of locally recurrent pediatric intracranial ependymoma: experience of the French society of children’s cancer. Radiother Oncol 132:1–7

    Article  PubMed  Google Scholar 

  75. Tsang DS, Burghen E, Klimo P Jr, Boop FA, Ellison DW, Merchant TE (2018) Outcomes after reirradiation for recurrent pediatric intracranial ependymoma. Int J Radiat Oncol Biol Phys 100:507–515

    Article  PubMed  Google Scholar 

  76. Eaton BR, Chowdhry V, Weaver K et al (2015) Use of proton therapy for re-irradiation in pediatric intracranial ependymoma. Radiother Oncol 116:301–308

    Article  PubMed  Google Scholar 

  77. Farnia B, Philip N, Georges RH et al (2016) Reirradiation of recurrent pediatric brain tumors after initial proton therapy. Int J Part Ther 3:1–12

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ohguri T, Imada H, Kohshi K et al (2007) Effect of prophylactic hyperbaric oxygen treatment for radiation-induced brain injury after stereotactic radiosurgery of brain metastases. Int J Radiat Oncol Biol Phys 67:248–255

    Article  PubMed  Google Scholar 

  79. Torcuator R, Zuniga R, Mohan YS et al (2009) Initial experience with bevacizumab treatment for biopsy confirmed cerebral radiation necrosis. J Neurooncol 94:63–68

    Article  CAS  PubMed  Google Scholar 

  80. Matuschek C, Bolke E, Nawatny J et al (2011) Bevacizumab as a treatment option for radiation-induced cerebral necrosis. Strahlenther Onkol 187:135–139

    Article  PubMed  Google Scholar 

  81. Lubelski D, Abdullah KG, Weil RJ, Marko NF (2013) Bevacizumab for radiation necrosis following treatment of high grade glioma: a systematic review of the literature. J Neurooncol 115:317–322

    Article  CAS  PubMed  Google Scholar 

  82. Levin VA, Bidaut L, Hou P et al (2011) Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys 79:1487–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study has received funding from the National Natural Science Foundation of China (81570344 to Ying Xin), the Norman Bethune Program of Jilin University (2015225 to Ying Xin and 2015203 to Xin Jiang), and the Jilin Provincial Science and Technology Foundations (20180414039GH to Ying Xin and 20190201200JC to Xin Jiang).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Xin or Xin Jiang.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Xin Jiang.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Not applicable

Ethical approval

Not applicable

Methodology

• Performed at one institution.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Shen, Z., Wang, H. et al. Research progress on mechanism and dosimetry of brainstem injury induced by intensity-modulated radiotherapy, proton therapy, and heavy ion radiotherapy. Eur Radiol 30, 5011–5020 (2020). https://doi.org/10.1007/s00330-020-06843-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-020-06843-4

Keywords

Navigation