Skip to main content
Log in

Contrast-enhanced 3T MR Perfusion of Musculoskeletal Tumours: T1 Value Heterogeneity Assessment and Evaluation of the Influence of T1 Estimation Methods on Quantitative Parameters

  • Oncology
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To evaluate intra-tumour and striated muscle T1 value heterogeneity and the influence of different methods of T1 estimation on the variability of quantitative perfusion parameters.

Material and methods

Eighty-two patients with a histologically confirmed musculoskeletal tumour were prospectively included in this study and, with ethics committee approval, underwent contrast-enhanced MR perfusion and T1 mapping. T1 value variations in viable tumour areas and in normal-appearing striated muscle were assessed. In 20 cases, normal muscle perfusion parameters were calculated using three different methods: signal based and gadolinium concentration based on fixed and variable T1 values.

Results

Tumour and normal muscle T1 values were significantly different (p = 0.0008). T1 value heterogeneity was higher in tumours than in normal muscle (variation of 19.8% versus 13%). The T1 estimation method had a considerable influence on the variability of perfusion parameters. Fixed T1 values yielded higher coefficients of variation than variable T1 values (mean 109.6 ± 41.8% and 58.3 ± 14.1% respectively). Area under the curve was the least variable parameter (36%).

Conclusion

T1 values in musculoskeletal tumours are significantly different and more heterogeneous than normal muscle. Patient-specific T1 estimation is needed for direct inter-patient comparison of perfusion parameters.

Key Points

• T1 value variation in musculoskeletal tumours is considerable.

• T1 values in muscle and tumours are significantly different.

• Patient-specific T1 estimation is needed for comparison of inter-patient perfusion parameters.

• Technical variation is higher in permeability than semiquantitative perfusion parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ROI:

region of interest

T1:

time to 63% longitudinal magnetisation recovery

FSE:

weighted fast spin-echo

NEX:

number of excitations

FOV:

field of view

HPF:

high power field

SPGR:

spoiled gradient-echo

AIF:

arterial input function

ICC:

intraclass correlation coefficients

CV:

coefficient of variation

EES:

extravascular extracellular space

SER :

signal enhancement ratio

AUC :

area under the curve

Max slope:

maximum slope of increase

Ktrans :

transfer constant from the plasma to the extravascular extracellular space

kep :

backflux constant

Vp :

plasma volume

Ve :

extravascular extracellular space volume

PVNS:

pigmented villonodular synovitis

GCT:

giant cell tumour

Bibliography

  1. Fisher SM, Joodi R, Madhuranthakam AJ et al (2016) Current utilities of imaging in grading musculoskeletal soft tissue sarcomas. Eur J Radiol 85:1336–1344

    Article  PubMed  Google Scholar 

  2. Fayad LM, Jacobs MA, Wang X et al (2012) Musculoskeletal tumours: how to use anatomic, functional, and metabolic MR techniques. Radiology 265:340–356

    Article  PubMed  PubMed Central  Google Scholar 

  3. Griffith JF, Yeung DKW, Leung JCS et al (2011) Prediction of bone loss in elderly female subjects by MR perfusion imaging and spectroscopy. Eur Radiol 21:1160–1169

    Article  PubMed  Google Scholar 

  4. Teixeira PAG, Chanson A, Beaumont M et al (2013) Dynamic MR imaging of osteoid osteomas: correlation of semiquantitative and quantitative perfusion parameters with patient symptoms and treatment outcome. Eur Radiol 23:2602–2611

    Article  PubMed  Google Scholar 

  5. Heye T, Davenport MS, Horvath JJ et al (2013) Reproducibility of dynamic contrast-enhanced MR imaging Part I. Perfusion characteristics in the female pelvis by using multiple computer-aided diagnosis perfusion analysis solutions. Radiology 266:801–811

    Article  PubMed  Google Scholar 

  6. Beuzit L, Eliat P-A, Brun V et al (2015) Dynamic contrast-enhanced MRI: Study of inter-software accuracy and reproducibility using simulated and clinical data. J Magn Reson Imaging. doi:10.1002/jmri.25101

    PubMed  Google Scholar 

  7. Cheng H-LM, Stikov N, Ghugre NR, Wright GA (2012) Practical medical applications of quantitative MR relaxometry. J Magn Reson Imaging 36:805–824

    Article  PubMed  Google Scholar 

  8. Ivanidze J, Kallas ON, Gupta A et al (2016) Application of blood–brain barrier permeability imaging in global cerebral edema. AJNR Am J Neuroradiol. doi:10.3174/ajnr.A4784

    Google Scholar 

  9. Brix G, Semmler W, Port R et al (1991) Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15:621–628

    Article  CAS  PubMed  Google Scholar 

  10. Hittmair K, Gomiscek G, Langenberger K et al (1994) Method for the quantitative assessment of contrast agent uptake in dynamic contrast-enhanced MRI. Magn Reson Med 31:567–571

    Article  CAS  PubMed  Google Scholar 

  11. Aronhime S, Calcagno C, Jajamovich G et al (2014) DCE-MRI of the liver: effect of linear and non linear conversions on hepatic perfusion quantification and reproducibility. J Magn Reson Imaging 40:90–98

    Article  PubMed  Google Scholar 

  12. Stikov N, Boudreau M, Levesque IR et al (2015) On the accuracy of T1 mapping: searching for common ground. Magn Reson Med 73:514–522

    Article  PubMed  Google Scholar 

  13. Piechnik SK, Ferreira VM, Lewandowski AJ et al (2013) Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI. J Cardiovasc Magn Reson 15:13

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pineda FD, Medved M, Fan X, Karczmar GS (2016) B1 and T1 mapping of the breast with a reference tissue method. Magn Reson Med 75:1565–1573

    Article  CAS  PubMed  Google Scholar 

  15. O’Connor JPB, Rose CJ, Waterton JC et al (2015) Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res 21:249–257

    Article  PubMed  Google Scholar 

  16. Trojani M, Contesso G, Coindre JM et al (1984) Soft-tissue sarcomas of adults; study of pathological prognostic variables and definition of a histopathological grading system. Int J Cancer 33:37–42

    Article  CAS  PubMed  Google Scholar 

  17. Abdul-Karim FW, Bauer TW, Kilpatrick SE et al (2004) Recommendations for the reporting of bone tumors. Association of Directors of Anatomic and Surgical Pathology. Hum Pathol 35:1173–1178

    Article  PubMed  Google Scholar 

  18. Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232

    Article  CAS  PubMed  Google Scholar 

  19. Dyke JP, Panicek DM, Healey JH et al (2003) Osteogenic and Ewing sarcomas: estimation of necrotic fraction during induction chemotherapy with dynamic contrast-enhanced MR imaging. Radiology 228:271–278

    Article  PubMed  Google Scholar 

  20. Leach MO, Brindle KM, Evelhoch JL et al (2005) The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 92:1599–1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schoierer O, Bloess K, Bender D et al (2014) Dynamic contrast-enhanced magnetic resonance imaging can assess vascularity within fracture non-unions and predicts good outcome. Eur Radiol 24:449–459

    Article  PubMed  Google Scholar 

  22. Gondim Teixeira PA, Gay F, Chen B et al (2016) Diffusion-weighted magnetic resonance imaging for the initial characterization of non-fatty soft tissue tumors: correlation between T2 signal intensity and ADC values. Skelet Radiol 45:263–271

    Article  Google Scholar 

  23. Crawley AP, Henkelman RM (1988) A comparison of one-shot and recovery methods in T1 imaging. Magn Reson Med 7:23–34

    Article  CAS  PubMed  Google Scholar 

  24. Cheng H-LM, Wright GA (2006) Rapid high-resolution T(1) mapping by variable flip angles: accurate and precise measurements in the presence of radiofrequency field inhomogeneity. Magn Reson Med 55:566–574

    Article  PubMed  Google Scholar 

  25. Hawighorst H, Libicher M, Knopp MV et al (1999) Evaluation of angiogenesis and perfusion of bone marrow lesions: role of semiquantitative and quantitative dynamic MRI. J Magn Reson Imaging 10:286–294

    Article  CAS  PubMed  Google Scholar 

  26. Ganeshan B, Miles KA, Babikir S et al (2016) CT-based texture analysis potentially provides prognostic information complementary to interim FDG-PET for patients with Hodgkin’s and aggressive non-Hodgkin’s lymphomas. Eur Radiol. doi:10.1007/s00330-016-4470-8

    Google Scholar 

  27. Giganti F, Antunes S, Salerno A et al (2016) Gastric cancer: texture analysis from multidetector computed tomography as a potential preoperative prognostic biomarker. Eur Radiol. doi:10.1007/s00330-016-4540-y

    PubMed  Google Scholar 

  28. Sidhu HS, Benigno S, Ganeshan B et al (2016) Textural analysis of multiparametric MRI detects transition zone prostate cancer. Eur Radiol. doi:10.1007/s00330-016-4579-9

    PubMed  PubMed Central  Google Scholar 

  29. Kim JH, Ko ES, Lim Y, et al. (2016) Breast cancer heterogeneity: MR imaging texture analysis and survival outcomes. Radiology 160261. doi: 10.1148/radiol.2016160261

  30. Foroutan P, Kreahling JM, Morse DL et al (2013) Diffusion MRI and novel texture analysis in osteosarcoma xenotransplants predicts response to anti-checkpoint therapy. PLoS ONE 8, e82875. doi:10.1371/journal.pone.0082875

    Article  PubMed  PubMed Central  Google Scholar 

  31. Verma RK, Slotboom J, Locher C et al (2016) Characterization of enhancing MS lesions by dynamic texture parameter analysis of dynamic susceptibility perfusion imaging. Biomed Res Int 2016:9578139

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Augusto Gondim Teixeira.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Prof. Alain Blum.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Funding

This study has received funding by the Société française de radiologie (SFR) and the Collège des enseignants de Radiologie de France (CERF).

Statistics and biometry

One of the authors has significant statistical expertise.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• prospective

• observational

• performed at one institution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gondim Teixeira, P., Leplat, C., Chen, B. et al. Contrast-enhanced 3T MR Perfusion of Musculoskeletal Tumours: T1 Value Heterogeneity Assessment and Evaluation of the Influence of T1 Estimation Methods on Quantitative Parameters. Eur Radiol 27, 4903–4912 (2017). https://doi.org/10.1007/s00330-017-4891-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-017-4891-z

Keywords

Navigation