Skip to main content

Advertisement

Log in

Potentiation of doxorubicin efficacy in hepatocellular carcinoma by the DNA repair inhibitor DT01 in preclinical models

  • Gastrointestinal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

This study aimed to explore the antitumour effect of the DNA repair inhibitor, DT01 (the cholesterol conjugated form of Dbait), as an adjunct treatment to enhance the therapeutic efficacy of transarterial chemoembolization (TACE) in pre-clinical models of hepatocellular carcinoma (HCC).

Methods

A rabbit model bearing liver tumours was either left untreated or treated with TACE or with a combination of TACE+DT01. Tumour growth was monitored by ultrasound. These results were further confirmed in mice grafted with an intrahepatic human HCC model treated with doxorubicin (DOX) alone or DOX+DT01.

Results

The combination of DT01 with TACE in a rabbit liver model led to a significant decrease in tumour volume (p=0.03). Colour Doppler and immunohistochemical staining revealed a strong decrease in vascularization in the DT01+TACE-treated group preventing the tumour growth restart observed after TACE alone. Similarly, the DT01 combination with DOX led to significant anti-tumour efficacy compared to DOX alone (p=0.02) in the human HCC model. In addition, a significant decrease in vascularization in the group receiving combination DT01 and DOX treatment was observed.

Conclusions

DT01 is well tolerated and may potentiate HCC treatment by enhancing the DNA-damaging and anti-vascularization effect of TACE with doxorubicin.

Key points

• DT01 combined with TACE leads to significant anti-tumour efficacy without additional toxicity.

• A potential anti-angiogenic role of DT01 was identified in preclinical models.

• DT01 may potentiate HCC treatment by enhancing the efficacy of TACE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CCl4 :

Carbon tetrachloride

CD31:

Cluster of differentiation 31

DNA-PK:

DNA-dependent protein kinase

DOX:

Doxorubicin

DSB:

Double strand break

HCC:

Hepatocellular carcinoma

HCV:

Hepatitis C virus

IP:

Intraperitoneal

MNi:

Micronuclei

MVD:

Microvessel density

TACE:

Transarterial chemoembolization

VEGF:

Vascular endothelial growth factor

VEGFR2:

Vascular endothelial growth factor receptor

VX2:

Carcinoma cells derived from virus-induced papilloma of rabbits

References

  1. Gomaa AI, Waked I (2015) Recent advances in multidisciplinary management of hepatocellular carcinoma. World J Hepatol 7:673–687

    Article  PubMed  PubMed Central  Google Scholar 

  2. Center MM, Jemal A (2011) International trends in liver cancer incidence rates. Cancer Epidemiol, Biomarkers Prevent : Publ Am Assoc Cancer Res, Cosponsored Am Soc Prevent Oncol 20:2362–2368

    Article  Google Scholar 

  3. Lin S, Hoffmann K, Schemmer P (2012) Treatment of hepatocellular carcinoma: a systematic review. Liver Cancer 1:144–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shin SW (2009) The current practice of transarterial chemoembolization for the treatment of hepatocellular carcinoma. Korean J Radiol 10:425–434

    Article  PubMed  PubMed Central  Google Scholar 

  5. Toyama T, Nitta N, Ohta S et al (2012) Clinical trial of cisplatin-conjugated gelatin microspheres for patients with hepatocellular carcinoma. Jpn J Radiol 30:62–68

    Article  CAS  PubMed  Google Scholar 

  6. Forner A, Gilabert M, Bruix J, Raoul JL (2014) Treatment of intermediate-stage hepatocellular carcinoma. Nat Rev Clin Oncol 11:525–535

    Article  CAS  PubMed  Google Scholar 

  7. Oldhafer KJ, Chavan A, Fruhauf NR et al (1998) Arterial chemoembolization before liver transplantation in patients with hepatocellular carcinoma: marked tumor necrosis, but no survival benefit? J Hepatol 29:953–959

    Article  CAS  PubMed  Google Scholar 

  8. Veltri A, Grosso M, Martina MC et al (1998) Effect of preoperative radiological treatment of hepatocellular carcinoma before liver transplantation: a retrospective study. Cardiovasc Intervent Radiol 21:393–398

    Article  CAS  PubMed  Google Scholar 

  9. Asghar U, Meyer T (2012) Are there opportunities for chemotherapy in the treatment of hepatocellular cancer? J Hepatol 56:686–695

    Article  PubMed  Google Scholar 

  10. Osman AM, Bayoumi HM, Al-Harthi SE, Damanhouri ZA, Elshal MF (2012) Modulation of doxorubicin cytotoxicity by resveratrol in a human breast cancer cell line. Cancer Cell Int 12:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Weintraub JL, Salem R (2013) Treatment of hepatocellular carcinoma combining sorafenib and transarterial locoregional therapy: state of the science. J Vasc Intervention Radiol : JVIR 24:1123–1134

    Article  Google Scholar 

  12. Quanz M, Berthault N, Roulin C et al (2009) Small-molecule drugs mimicking DNA damage: a new strategy for sensitizing tumors to radiotherapy. Clin Cancer Res : Off J Am Assoc Cancer Res 15:1308–1316

    Article  CAS  Google Scholar 

  13. Quanz M, Chassoux D, Berthault N, Agrario C, Sun JS, Dutreix M (2009) Hyperactivation of DNA-PK by double-strand break mimicking molecules disorganizes DNA damage response. PLoS One 4:e6298

    Article  PubMed  PubMed Central  Google Scholar 

  14. Croset A, Cordelieres FP, Berthault N et al (2013) Inhibition of DNA damage repair by artificial activation of PARP with siDNA. Nucleic Acids Res 41(15):7344–7355, Epub 2013/06/14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Berthault N, Maury B, Agrario C et al (2011) Comparison of distribution and activity of nanoparticles with short interfering DNA (Dbait) in various living systems. Cancer Gene Ther 18:695–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Coquery N, Pannetier N, Farion R et al (2012) Distribution and radiosensitizing effect of cholesterol-coupled Dbait molecule in rat model of glioblastoma. PLoS One 7:e40567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Devun F, Bousquet G, Biau J et al (2012) Preclinical study of the DNA repair inhibitor Dbait in combination with chemotherapy in colorectal cancer. J Gastroenterol 47:266–275

    Article  CAS  PubMed  Google Scholar 

  18. Devun F, Biau J, Huerre M et al (2014) Colorectal cancer metastasis: the DNA repair inhibitor Dbait increases sensitivity to hyperthermia and improves efficacy of radiofrequency ablation. Radiology 270:736–746

    Article  PubMed  Google Scholar 

  19. Rao PP, Pascale F, Seck A et al (2012) Irinotecan loaded in eluting beads: preclinical assessment in a rabbit VX2 liver tumor model. Cardiovasc Intervent Radiol 35:1448–1459

    Article  PubMed  Google Scholar 

  20. Bize P, Duran R, Fuchs K, et al. (2016) Antitumoral effect of sunitinib-eluting beads in the rabbit VX2 tumor model. Radiology: 150361

  21. Herath NI, Devun F, Lienafa MC et al (2016) The DNA repair inhibitor DT01 as a novel therapeutic strategy for chemosensitization of colorectal liver metastasis. Mol Cancer Ther 15:15–22

    Article  CAS  PubMed  Google Scholar 

  22. Ramirez LH, Julieron M, Bonnay M et al (1995) Stimulation of tumor growth in vitro and in vivo by suramin on the VX2 model. Investig New Drugs 13:51–53

    Article  CAS  Google Scholar 

  23. Geschwind JF, Artemov D, Abraham S et al (2000) Chemoembolization of liver tumor in a rabbit model: assessment of tumor cell death with diffusion-weighted MR imaging and histologic analysis. J Vasc Intervention Radiol : JVIR 11:1245–1255

    Article  CAS  Google Scholar 

  24. Wang B, Xu H, Gao ZQ, Ning HF, Sun YQ, Cao GW (2008) Increased expression of vascular endothelial growth factor in hepatocellular carcinoma after transcatheter arterial chemoembolization. Acta Radiol 49:523–529

    Article  CAS  PubMed  Google Scholar 

  25. Desai VG, Herman EH, Moland CL (2013) Development of doxorubicin -induced chronic cardiotoxicity in the B6C3F1 mouse model. Toxicol Appl Pharmacol 266:109–121

    Article  CAS  PubMed  Google Scholar 

  26. Fenech M (1993) The cytokinesis-block micronucleus technique: a detailed description of the method and its application to genotoxicity studies in human populations. Mutat Res 285:35–44

    Article  CAS  PubMed  Google Scholar 

  27. Turner HC, Shuryak I, Taveras M et al (2015) Effect of dose rate on residual gamma-H2AX levels and frequency of micronuclei in X-irradiated mouse lymphocytes. Radiat Res 183:315–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Holmes K, Roberts OL, Thomas AM, Cross MJ (2007) Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal 19:2003–2012

    Article  CAS  PubMed  Google Scholar 

  29. Chu JS, Ge FJ, Zhang B et al (2013) Expression and prognostic value of VEGFR-2, PDGFR-beta, and c-Met in advanced hepatocellular carcinoma. J Experiment Clin Cancer Res : CR 32:16

    Article  CAS  Google Scholar 

  30. Biau J, Devun F, Jdey W et al (2014) A preclinical study combining the DNA repair inhibitor Dbait with radiotherapy for the treatment of melanoma. Neoplasia 16:835–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Viallard C, Chezal JM, Mishellany F et al (2016) Targeting DNA repair by coDbait enhances melanoma targeted radionuclide therapy. Oncotarget 7:12927–12936

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dellinger MT, Brekken RA (2011) Phosphorylation of Akt and ERK1/2 is required for VEGF-A/VEGFR2-induced proliferation and migration of lymphatic endothelium. PLoS One 6:e28947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pratheeshkumar P, Budhraja A, Son YO et al (2012) Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR- 2 regulated AKT/mTOR/P70S6K signaling pathways. PLoS One 7:e47516

    Article  PubMed  PubMed Central  Google Scholar 

  34. Economopoulou M, Langer HF, Celeste A et al (2009) Histone H2AX is integral to hypoxia-driven neovascularization. Nat Med 15:553–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xiao H, Tong R, Ding C et al (2015) gamma-H2AX promotes hepatocellular carcinoma angiogenesis via EGFR/HIF-1alpha/VEGF pathways under hypoxic condition. Oncotarget 6:2180–2192

    Article  PubMed  Google Scholar 

  36. Glazer PM, Hegan DC, Lu Y, Czochor J, Scanlon SE (2013) Hypoxia and DNA repair. Yale J Biol Med 86:443–451

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bristow RG, Hill RP (2008) Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 8:180–192

    Article  CAS  PubMed  Google Scholar 

  38. Chan N, Koritzinsky M, Zhao H et al (2008) Chronic hypoxia decreases synthesis of homologous recombination proteins to offset chemoresistance and radioresistance. Cancer Res 68:605–614

    Article  CAS  PubMed  Google Scholar 

  39. Simonetti RG, Camma C, Fiorello F, Politi F, D'Amico G, Pagliaro L (1991) Hepatocellular carcinoma. a worldwide problem and the major risk factors. Dig Dis Sci 36:962–972

    Article  CAS  PubMed  Google Scholar 

  40. Gholamrezanezhad A, Mirpour S, Geschwind JH, et al. (2016) Evaluation of 70-150-mum doxorubicin-eluting beads for transcatheter arterial chemoembolization in the rabbit liver VX2 tumour model. Europ Radiol

  41. Brown KT, Do RK, Gonen M, et al. (2016) Randomized trial of hepatic artery embolization for hepatocellular carcinoma using doxorubicin-eluting microspheres compared with embolization with microspheres alone. J Clin Oncol : Off J Am Soc Clin Oncol

Download references

Acknowledgements

The authors would like to thank Sophie Dodier for histological services (Histology platform, Institut Curie), Prof. Michel Huerre for analyses of histological sections and Mr. André Nicolas for scanning of histological sections (Pathology service, l’hôpital Curie). This study was also supported by the technical staff of the Institut Curie animal facility. The authors would further like to thank Florentina Pascale (Archimmed, Jouy en Josas) for facilitating the TACE study.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirmitha I. Herath.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Dr. Marie Dutreix

Conflict of interest

JSS and MD declare relationships with DNA Therapeutics.

Funding

This study has received funding by DNA Therapeutics and the Translational Department of Institut Curie.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Ethical approval

Approval from the institutional animal care committee was obtained.

Methodology

• prospective

• experimental

• multicentre study

Additional information

Nirmitha I. Herath and Flavien Devun are co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 29 kb)

ESM 2

(DOC 26 kb)

ESM 3

(DOC 31 kb)

ESM 4

(DOC 26 kb)

ESM 5

(DOC 2396 kb)

ESM 6

(DOC 871 kb)

ESM 7

(MOV 799 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herath, N.I., Devun, F., Herbette, A. et al. Potentiation of doxorubicin efficacy in hepatocellular carcinoma by the DNA repair inhibitor DT01 in preclinical models. Eur Radiol 27, 4435–4444 (2017). https://doi.org/10.1007/s00330-017-4792-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-017-4792-1

Keywords

Navigation