Skip to main content
Log in

Dynamic contrast-enhanced micro-CT on mice with mammary carcinoma for the assessment of antiangiogenic therapy response

  • Molecular Imaging
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To evaluate the potential of in vivo dynamic contrast-enhanced micro-computed tomography (DCE micro-CT) for the assessment of antiangiogenic drug therapy response of mice with mammary carcinoma.

Methods

20 female mice with implanted MCF7 tumours were split into control group and therapy group treated with a known effective antiangiogenic drug. All mice underwent DCE micro-CT for the 3D analysis of functional parameters (relative blood volume [rBV], vascular permeability [K], area under the time-enhancement curve [AUC]) and morphology. All parameters were determined for total, peripheral and central tumour volumes of interest (VOIs). Immunohistochemistry was performed to characterise tumour vascularisation. 3D dose distributions were determined.

Results

The mean AUCs were significantly lower in therapy with P values of 0.012, 0.007 and 0.023 for total, peripheral and central tumour VOIs. K and rBV showed significant differences for the peripheral (P Kper  = 0.032, P rBVper  = 0.029), but not for the total and central tumour VOIs (P Ktotal  = 0.108, P Kcentral  = 0.246, P rBVtotal  = 0.093, P rBVcentral  = 0.136). Mean tumour volume was significantly smaller in therapy (P in vivo = 0.001, P ex vivo = 0.005). Histology revealed greater vascularisation in the controls and central tumour necrosis. Doses ranged from 150 to 300 mGy.

Conclusions

This study indicates the great potential of DCE micro-CT for early in vivo assessment of antiangiogenic drug therapy response.

Key Points

Dynamic contrast enhanced micro-CT (computed tomography) is a new experimental laboratory technique.

DCE micro-CT allows early in vivo assessment of antiangiogenic drug therapy response.

Pharmaceutical drugs can be tested before translation to clinical practice.

Both morphological and functional parameters can be obtained using DCE micro-CT.

Antiangiogenic effects can be visualised with DCE micro-CT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Du LY, Umoh J, Nikolov HN, Pollmann SI, Lee TY, Holdsworth DW (2007) A quality assurance phantom for the performance evaluation of volumetric micro-CT systems. Phys Med Biol 52:7087–7108

    Article  PubMed  Google Scholar 

  2. Lee SC, Kim HK, Chun IK, Cho MH, Lee SY (2003) A flat-panel detector based micro-CT system: performance evaluation for small-animal imaging. Phys Med Biol 48:4173–4185

    Article  PubMed  Google Scholar 

  3. Engelhorn T, Eyupoglu IY, Schwarz MA et al (2009) In vivo micro-CT imaging of rat brain glioma: a comparison with 3T MRI and histology. Neurosci Lett 458:28–31

    Article  PubMed  CAS  Google Scholar 

  4. Ertel D, Kyriakou Y, Lapp RM, Kalender WA (2009) Respiratory phase-correlated micro-CT imaging of free-breathing rodents. Phys Med Biol 54:3837–3846

    Article  PubMed  Google Scholar 

  5. Ritman EL (2004) Micro-computed tomography-current status and developments. Annu Rev Biomed Eng 6:185–208

    Article  PubMed  CAS  Google Scholar 

  6. Ford NL, Thornton MM, Holdsworth DW (2003) Fundamental image quality limits for microcomputed tomography in small animals. Med Phys 30:2869–2877

    Article  PubMed  CAS  Google Scholar 

  7. Kalender WA (2011) Computed tomography. Publicis Publishing, Erlangen

    Google Scholar 

  8. Kiessling F, Pichler JB (2011) Small animal imaging. Springer, Berlin Heidelberg

    Book  Google Scholar 

  9. Peyrin F, Salome M, Cloetens P, Laval-Jeantet AM, Ritman E, Ruegsegger P (1998) Micro-CT examinations of trabecular bone samples at different resolutions: 14, 7 and 2 micron level. Tech Health Care 6:391–401

    CAS  Google Scholar 

  10. Boyd SK, Davison P, Muller R, Gasser JA (2006) Monitoring individual morphological changes over time in ovariectomized rats by in vivo micro-computed tomography. Bone 39:854–862

    Article  PubMed  Google Scholar 

  11. Chun IK, Cho MH, Park JH, Lee SY (2006) In vivo trabecular thickness measurement in cancellous bones: longitudinal rat imaging studies. Physiol Meas 27:695–702

    Article  PubMed  Google Scholar 

  12. Engelke K, Karolczak M, Lutz A, Seibert U, Schaller S, Kalender W (1999) Micro-CT. Technology and application for assessing bone structure. Radiologe 39:203–212

    Article  PubMed  CAS  Google Scholar 

  13. Thali MJ, Taubenreuther U, Karolczak M et al (2003) Forensic microradiology: micro-computed tomography (Micro-CT) and analysis of patterned injuries inside of bone. J Forensic Sci 48:1336–1342

    PubMed  Google Scholar 

  14. Wang X, Liu X, Niebur GL (2004) Preparation of on-axis cylindrical trabecular bone specimens using micro-CT imaging. J Biomech Eng 126:122–125

    Article  PubMed  Google Scholar 

  15. Lerman A, Ritman EL (1999) Evaluation of microvascular anatomy by micro-CT. Herz 24:531–533

    Article  PubMed  CAS  Google Scholar 

  16. Beighley PE, Thomas PJ, Jorgensen SM, Ritman EL (1997) 3D architecture of myocardial microcirculation in intact rat heart: a study with micro-CT. Adv Exp Med Biol 430:165–175

    Article  PubMed  CAS  Google Scholar 

  17. Cavanaugh D, Johnson E, Price RE, Kurie J, Travis EL, Cody DD (2004) In vivo respiratory-gated micro-CT imaging in small-animal oncology models. Mol Imaging 3:55–62

    Article  PubMed  Google Scholar 

  18. Kiessling F, Greschus S, Lichy MP et al (2004) Volumetric computed tomography (VCT): a new technology for noninvasive, high-resolution monitoring of tumor angiogenesis. Nat Med 10:1133–1138

    Article  PubMed  CAS  Google Scholar 

  19. Namati E, Thiesse J, Sieren JC, Ross A, Hoffman EA, McLennan G (2010) Longitudinal assessment of lung cancer progression in the mouse using in vivo micro-CT imaging. Med Phys 37:4793–4805

    Article  PubMed  Google Scholar 

  20. Wang Y, Wertheim DF, Jones AS, Coombes AG (2010) Micro-CT in drug delivery. Eur J Pharm Biopharm 74:41–49

    Article  PubMed  CAS  Google Scholar 

  21. Wang Y, Wertheim DF, Jones AS, Chang HI, Coombes AG (2010) Micro-CT analysis of matrix-type drug delivery devices and correlation with protein release behaviour. J Pharm Sci 99:2854–2862

    PubMed  CAS  Google Scholar 

  22. Rodriguez M, Zhou H, Keall P, Graves E (2009) Commissioning of a novel microCT/RT system for small animal conformal radiotherapy. Phys Med Biol 54:3727–3740

    Article  PubMed  Google Scholar 

  23. Artaechevarria X, Blanco D, de Biurrun G et al (2011) Evaluation of micro-CT for emphysema assessment in mice: comparison with non-radiological techniques. Eur Radiol 21:954–962

    Article  PubMed  Google Scholar 

  24. Postnov AA, Meurrens K, Weiler H et al (2005) In vivo assessment of emphysema in mice by high resolution X-ray microtomography. J Microsc 220:70–75

    Article  PubMed  CAS  Google Scholar 

  25. Artaechevarria X, Perez-Martin D, Ceresa M et al (2009) Airway segmentation and analysis for the study of mouse models of lung disease using micro-CT. Phys Med Biol 54:7009–7024

    Article  PubMed  CAS  Google Scholar 

  26. Ford NL, Martin EL, Lewis JF, Veldhuizen RA, Holdsworth DW, Drangova M (2009) Quantifying lung morphology with respiratory-gated micro-CT in a murine model of emphysema. Phys Med Biol 54:2121–2130

    Article  PubMed  CAS  Google Scholar 

  27. Johnson KA (2007) Imaging techniques for small animal imaging models of pulmonary disease: micro-CT. Toxicol Pathol 35:59–64

    Article  PubMed  Google Scholar 

  28. Chen LC, Chang CH, Yu CY et al (2008) Pharmacokinetics, micro-SPECT/CT imaging and therapeutic efficacy of (188)Re-DXR-liposome in C26 colon carcinoma ascites mice model. Nucl Med Biol 35:883–893

    Article  PubMed  CAS  Google Scholar 

  29. Graves EE, Weissleder R, Ntziachristos V (2004) Fluorescence molecular imaging of small animal tumor models. Curr Mol Med 4:419–430

    Article  PubMed  CAS  Google Scholar 

  30. Ho CL, Chen LC, Lee WC et al (2009) Receptor-binding, biodistribution, dosimetry, and micro-SPECT/CT imaging of 111In-[DTPA(1), Lys(3), Tyr(4)]-bombesin analog in human prostate tumor-bearing mice. Cancer Biother Radiopharm 24:435–443

    PubMed  CAS  Google Scholar 

  31. Ritman EL (2002) Molecular imaging in small animals–roles for micro-CT. J Cell Biochem Suppl 39:116–124

    Article  PubMed  Google Scholar 

  32. Badea CT, Johnston SM, Subashi E, Qi Y, Hedlund LW, Johnson GA (2009) Lung perfusion imaging in small animals using 4D micro-CT at heartbeat temporal resolution. Med Phys 37:54–62

    Article  Google Scholar 

  33. Eastwood JD, Provenzale JM, Hurwitz LM, Lee TY (2001) Practical injection-rate CT perfusion imaging: deconvolution-derived hemodynamics in a case of stroke. Neuroradiology 43:223–226

    Article  PubMed  CAS  Google Scholar 

  34. Eastwood JD, Lev MH, Azhari T et al (2002) CT perfusion scanning with deconvolution analysis: pilot study in patients with acute middle cerebral artery stroke. Radiology 222:227–236

    Article  PubMed  Google Scholar 

  35. Eastwood JD, Lev MH, Wintermark M et al (2003) Correlation of early dynamic CT perfusion imaging with whole-brain MR diffusion and perfusion imaging in acute hemispheric stroke. AJNR Am J Neuroradiol 24:1869–1875

    PubMed  Google Scholar 

  36. Nabavi DG, Cenic A, Craen RA et al (1999) CT assessment of cerebral perfusion: experimental validation and initial clinical experience. Radiology 213:141–149

    PubMed  CAS  Google Scholar 

  37. Klotz E, Koenig M (1999) Perfusion measurements of the brain: using dynamic CT for the quantitative assessment of cerebral ischemia in acute stroke. Eur J Radiol 30:170–184

    Article  PubMed  CAS  Google Scholar 

  38. Koenig M, Kraus M, Theek C, Klotz E, Gehlen W, Heuser L (2001) Quantitative assessment of the ischemic brain by means of perfusion-related parameters derived from perfusion CT. Stroke 32:431–437

    Article  PubMed  CAS  Google Scholar 

  39. Koenig M, Banach-Planchamp R, Kraus M et al (2000) CT perfusion imaging in acute ischemic cerebral infarct: comparison of cerebral perfusion maps and conventional CT findings. Rofo 172:219–226

    Article  Google Scholar 

  40. Koenig M, Klotz E, Heuser L (2000) Cerebral perfusion CT: theoretical aspects, methodical implementation and clinical experience in the diagnosis of ischemic cerebral infarction. Rofo 172:210–218

    Article  Google Scholar 

  41. Badea CT, Drangova M, Holdsworth DW, Johnson GA (2008) In vivo small-animal imaging using micro-CT and digital subtraction angiography. Phys Med Biol 53:R319–350

    Article  PubMed  CAS  Google Scholar 

  42. Kan Z, Kobayashi S, Phongkitkarun S, Charnsangavej C (2005) Functional CT quantification of tumor perfusion after transhepatic arterial embolization in a rat model. Radiology 237:144–150

    Article  PubMed  Google Scholar 

  43. Kan Z, Phongkitkarun S, Kobayashi S et al (2005) Functional CT for quantifying tumor perfusion in antiangiogenic therapy in a rat model. Radiology 237:151–158

    Article  PubMed  Google Scholar 

  44. Goh V, Halligan S, Gharpuray A, Wellsted D, Sundin J, Bartram CI (2008) Quantitative assessment of colorectal cancer tumor vascular parameters by using perfusion CT: influence of tumor region of interest. Radiology 247:726–732

    Article  PubMed  Google Scholar 

  45. Ishii A, Korogi Y, Nishimura R et al (2004) Intraarterial infusion chemotherapy for head and neck cancers: evaluation of tumor perfusion with intraarterial CT during carotid arteriography. Radiat Med 22:254–259

    PubMed  Google Scholar 

  46. Komemushi A, Tanigawa N, Kojima H, Kariya S, Sawada S (2003) CT perfusion of the liver during selective hepatic arteriography: pure arterial blood perfusion of liver tumor and parenchyma. Radiat Med 21:246–251

    PubMed  Google Scholar 

  47. Sahani DV, Kalva SP, Hamberg LM et al (2005) Assessing tumor perfusion and treatment response in rectal cancer with multisection CT: initial observations. Radiology 234:785–792

    Article  PubMed  Google Scholar 

  48. Sahani DV, Holalkere NS, Mueller PR, Zhu AX (2007) Advanced hepatocellular carcinoma: CT perfusion of liver and tumor tissue–initial experience. Radiology 243:736–743

    Article  PubMed  Google Scholar 

  49. Nett BE, Brauweiler R, Kalender W, Rowley H, Chen GH (2010) Perfusion measurements by micro-CT using prior image constrained compressed sensing (PICCS): initial phantom results. Phys Med Biol 55:2333–2350

    Article  PubMed  Google Scholar 

  50. Tanaka C, O’Reilly T, Kovarik JM et al (2008) Identifying optimal biologic doses of everolimus (RAD001) in patients with cancer based on the modeling of preclinical and clinical pharmacokinetic and pharmacodynamic data. J Clin Oncol 26:1596–1602

    PubMed  CAS  Google Scholar 

  51. O’Reilly T, McSheehy PM (2010) Biomarker Development for the Clinical Activity of the mTOR Inhibitor Everolimus (RAD001): Processes, Limitations, and Further Proposals. Transl Oncol 3:65–79

    PubMed  Google Scholar 

  52. O’Reilly T, McSheehy PM, Kawai R et al (2010) Comparative pharmacokinetics of RAD001 (everolimus) in normal and tumor-bearing rodents. Canc Chemother Pharmacol 65:625–639

    Article  Google Scholar 

  53. Gennigens C, Sautois B, Jerusalem G (2010) Everolimus (RAD001/Afinitor) in the treatment of metastatic cell carcinoma. Rev Med Liege 65:212–216

    PubMed  CAS  Google Scholar 

  54. Mastmeyer A, Engelke K, Fuchs C, Kalender WA (2006) A hierarchical 3D segmentation method and the definition of vertebral body coordinate systems for QCT of the lumbar spine. Med Image Anal 10:560–577

    Article  PubMed  Google Scholar 

  55. Kang Y, Engelke K, Kalender WA (2003) A new accurate and precise 3-D segmentation method for skeletal structures in volumetric CT data. IEEE Trans Med Imaging 22:586–598

    Article  PubMed  Google Scholar 

  56. Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7

    Article  PubMed  CAS  Google Scholar 

  57. Miles KA, Griffiths MR (2003) Perfusion CT: a worthwhile enhancement? Br J Radiol 76:220–231

    Article  PubMed  CAS  Google Scholar 

  58. Vermeulen PB, Gasparini G, Fox SB et al (2002) Second international consensus on the methodology and criteria of evaluation of angiogenesis quantification in solid human tumours. Eur J Cancer 38:1564–1579

    Article  PubMed  CAS  Google Scholar 

  59. Weidner N (1995) Intratumor microvessel density as a prognostic factor in cancer. Am J Pathol 147:9–19

    PubMed  CAS  Google Scholar 

  60. Weidner N, Semple JP, Welch WR, Folkman J (1991) Tumor angiogenesis and metastasis–correlation in invasive breast carcinoma. N Engl J Med 324:1–8

    Article  PubMed  CAS  Google Scholar 

  61. Fox SB, Harris AL (1997) Markers of tumor angiogenesis: clinical applications in prognosis and anti-angiogenic therapy. Investig New Drugs 15:15–28

    Article  CAS  Google Scholar 

  62. Hlatky L, Hahnfeldt P, Folkman J (2002) Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J Natl Cancer Inst 94:883–893

    Article  PubMed  Google Scholar 

  63. Purdie TG, Henderson E, Lee TY (2001) Functional CT imaging of angiogenesis in rabbit VX2 soft-tissue tumour. Phys Med Biol 46:3161–3175

    Article  PubMed  CAS  Google Scholar 

  64. Carlson SK, Classic KL, Bender CE, Russell SJ (2007) Small animal absorbed radiation dose from serial micro-computed tomography imaging. Mol Imag Biol 9:78–82

    Article  Google Scholar 

  65. Bardelmeijer HA, Buckle T, Ouwehand M, Beijnen JH, Schellens JH, van Tellingen O (2003) Cannulation of the jugular vein in mice: a method for serial withdrawal of blood samples. Lab Anim 37:181–187

    Article  PubMed  CAS  Google Scholar 

  66. Mokhtarian A, Meile MJ, Even PC (1993) Chronic vascular catheterization in the mouse. Physiol Behav 54:895–898

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the German Research Foundation (DFG Research Unit 661) and from the Erlangen Graduate School in Advanced Optical Technologies (SAOT). Moreover, the authors would like to thank Thordis Krepcke and Dr. Marek Karolczak for assisting with the measurements and Prof. Dr. Klaus Engelke for supplying the MIAF 3D segmentation software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Eisa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisa, F., Brauweiler, R., Hupfer, M. et al. Dynamic contrast-enhanced micro-CT on mice with mammary carcinoma for the assessment of antiangiogenic therapy response. Eur Radiol 22, 900–907 (2012). https://doi.org/10.1007/s00330-011-2318-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-011-2318-9

Keywords

Navigation