Skip to main content

Advertisement

Log in

Digital breast tomosynthesis versus digital mammography: a clinical performance study

  • Breast
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To compare the clinical performance of digital breast tomosynthesis (DBT) with that of full-field digital mammography (FFDM) in a diagnostic population.

Methods

The study enrolled 200 consenting women who had at least one breast lesion discovered by mammography and/or ultrasound classified as doubtful or suspicious or probably malignant. They underwent tomosynthesis in one view [mediolateral oblique (MLO)] of both breasts at a dose comparable to that of standard screen-film mammography in two views [craniocaudal (CC) and MLO]. Images were rated by six breast radiologists using the BIRADS score. Ratings were compared with the truth established according to the standard of care and a multiple-reader multiple-case (MRMC) receiver-operating characteristic (ROC) analysis was performed. Clinical performance of DBT compared with that of FFDM was evaluated in terms of the difference between areas under ROC curves (AUCs) for BIRADS scores.

Results

Overall clinical performance with DBT and FFDM for malignant versus all other cases was not significantly different (AUCs 0.851 vs 0.836, p = 0.645). The lower limit of the 95% CI or the difference between DBT and FFDM AUCs was −4.9%.

Conclusion

Clinical performance of tomosynthesis in one view at the same total dose as standard screen-film mammography is not inferior to digital mammography in two views.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Niklason LT, Christian BT, Niklason LE, Kopans DB, Castleberry DE, Ophsal-Ong BH, Landberg CE, Slanetz PJ, Giardino AA, Moore R, Albagli D, DeJoule MC, Fitzgerald PF, Fobare DF, Giambattista BW, Kwasnick RF, Liu J, Lubowski SJ, Possin GE, Richotte JF, Wei C-Y, Wirth RF (1997) Digital tomosynthesis in breast imaging. Radiology 205:399–406

    CAS  PubMed  Google Scholar 

  2. Dobbins JT III, Godfrey DJ (2003) Digital x-ray tomosynthesis: current state of the art and clinical potential. Phys Med Biol 48:R65–R106

    Article  PubMed  Google Scholar 

  3. Park JM, Franken EA Jr, Garg M, Fajardo LL, Niklason LT (2007) Breast tomosynthesis: present considerations and future applications. Radiographics (Suppl 1):S231–S240

  4. Rafferty E (2007) Digital mammography: novel applications. Radiol Clin N Am 45:831–843

    Article  PubMed  Google Scholar 

  5. van Tiggelen R (2002) In search for the third dimension: from radiostereoscopy to three-dimensional imaging. JBR-BTR 85:266–270

    PubMed  Google Scholar 

  6. Mahesh M (2004) Digital mammography: an overview. Radiographics 24:1747–1760

    Article  PubMed  Google Scholar 

  7. Spahn M (2005) Flat detectors and their clinical applications. Eur Radiol 15:1934–1947

    Article  PubMed  Google Scholar 

  8. Pisano ED, Yaffe MJ (2005) Digital mammography. Radiology 234:353–362

    Article  PubMed  Google Scholar 

  9. Wu T, Liu B, Moore R, Kopans D (2006) Optimal acquisition techniques for digital breast tomosynthesis screening. In: Flynn MJ, Hsieh J (eds) Medical imaging 2006: physics of medical imaging. Proceedings of SPIE 2006 6142:61425-E

  10. Sechopoulos I, Suryanarayanan S, Vedhantam S, D’Orsi C, Karellas A (2007) Computation of the glandular radiation dose in digital tomosynthesis of the breast. Med Phys 34:331–232

    Google Scholar 

  11. Ma AKW, Darambera DG, Stewart A, Gunn S, Bullard E (2008) Mean glandular dose estimation using MNCPX for a digital breast tomosynthesis system with tungsten/aluminum and tungsten/aluminum + silver x-ray anode/filter combination. Med Phys 35:5278–5289

    Article  PubMed  Google Scholar 

  12. Gong X, Glick SJ, Liu B, Vedula AA, Thacker S (2006) A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis and cone-beam CT breast-imaging. Med Phys 33:1041–1052

    Article  PubMed  Google Scholar 

  13. Zhao B, Zhao W (2008) Three-dimensional linear system analysis for breast tomosynthesis. Med Phys 35:5219–5232

    Article  PubMed  Google Scholar 

  14. Zhou J, Zhao B, Zhao W (2007) A computer simulation platform for the optimization of a breast tomosynthesis system. Med Phys 34:1098–1109

    Article  PubMed  Google Scholar 

  15. Chawla AS, Samei E, Saunders RS, Lo JY, Baker JA (2008) A mathematical model platform for optimizing a multiprojection breast imaging system. Med Phys 35:1337–1345

    Article  PubMed  Google Scholar 

  16. Wang X, Mainprize JG, Kempston MP, Mawdsley GE, Yaffe MJ (2007) Digital breast tomosynthesis geometry calibration. In: Flynn MJ, Hsieh J (ed) Medical imaging 2007: physics of medical imaging. Proceedings of SPIE 2007 6510:65103B

  17. Sechopoulos I, Suryanarayanan S, Vedhantam S, D’Orsi C, Karellas A (2007) Scatter radiation in digital tomosynthesis of the breast. Med Phys 34:564–576

    Article  PubMed  Google Scholar 

  18. Wu T, Moore RH, Rafferty EA, Kopans DB (2004) A comparison of reconstruction algorithms for breast tomosynthesis. Med Phys 31:2636–2647

    Article  PubMed  Google Scholar 

  19. Wu T, Moore RH, Kopans DB (2006) Voting strategy for artifact reduction in digital breast tomosynthesis. Med Phys 33:1461–1471

    Google Scholar 

  20. Zhang Y, Chan H-P, Sahiner B, Wei J, Goodsitt MM, Hadjiiski LM, Ge J, Zhou C (2006) A comparative study of limited angle cone-beam reconstruction methods for breast tomosynthesis. Med Phys 33:3781–3795

    Article  PubMed  Google Scholar 

  21. Chan H-P, Sahiner B, Rafferty EA, Wu T, Roubidoux MA, Moore RH, Kopans DB, Hadjiiski LM, Helvie MA (2005) Computer-aided detection system for breast masses on digital tomosynthesis mammograms: preliminary experience. Radiology 237:1075–1080

    Article  PubMed  Google Scholar 

  22. Reiser I, Nishikawa RM, Giger ML, Wu T, Rafferty EA, Moore R, Kopans DB (2006) Computerized mass detection for digital breast tomosynthesis directly from projection images. Med Phys 33:482–491

    Article  CAS  PubMed  Google Scholar 

  23. Chan H-P, Wei J, Zhang Y, Helvie MA, Moore RH, Sahiner B, Hadjiiski LM, Kopans DB (2008) Computer-aided detection of masses in digital tomosynthesis mammography: comparison of three approaches. Med Phys 35:4087–4095

    Article  PubMed  Google Scholar 

  24. Reiser I, Nishikawa RM, Edwards AV, Kopans DB, Schmidt RA, Papaioannou J, Moore RH (2008) Automated detection of microcalcification clusters for digital breast tomosynthesis using projection data only: a preliminary study. Med Phys 35:1486–1493

    Article  CAS  PubMed  Google Scholar 

  25. Poplack SP, Tosteson TD, Kogel CA, Nagy HM (2007) Digital breast tomosynthesis: initial experience in 98 women with abnormal digital screening mammography. AJR Am J Roentgenol 189:616–623

    Article  PubMed  Google Scholar 

  26. Good WF, Abrams GS, Catullo VJ, Chough DM, Ganott MA, Hakim CM, Gur D (2008) Digital breast tomosynthesis: a pilot observer study. AJR Am J Roentgenol 190:865–869

    Article  PubMed  Google Scholar 

  27. Andersson I, Ikeda DM, Zackrisson S, Ruschin M, Svahn T, Timberg P, Timberg A (2008) Breast tomosynthesis and digital mammography: a comparison of breast cancer visibility and BIRADS classification in a population of cancers with subtle mammographic findings. Eur Radiol 18:2817–2825

    Article  PubMed  Google Scholar 

  28. Smith AP, Rafferty EA, Niklason L (2008) Clinical performance of breast tomosynthesis as a function of radiologist experience level. LNCS 5116:61–66

    Google Scholar 

  29. van Engen R, van Wouldenberg S, Bosmans H, Young K, Thjissen M (2006) European protocol for the quality control of the physical aspects of mammography screening—Screen-film mammography. In: European Guidelines for Quality Assurance in Breast Cancer Screening and Diagnosis, 4th edn. European Commission, Luxembourg, pp 61–104

  30. Dance DR, Skinner CL, Young KC, Beckett JR, Kotre CJ (2000) Additional factors for the estimation of mean glandular breast dose using the UK mammography dosimetry protocol. Phys Med Biol 45:3225–3240

    Article  CAS  PubMed  Google Scholar 

  31. American College of Radiology (ACR) (2003) Breast Imaging Reporting and Data System Atlas (BI-RADS Atlas). American College of Radiology, Reston

  32. Metz CE, Pan X (1999) “Proper” binormal ROC curves: theory and maximum-likelihood estimation. J Math Psychol 43:1–33

    Article  PubMed  Google Scholar 

  33. Pesce LL, Metz CE (2007) Reliable and computationally efficient maximum-likelihood estimation of “proper” binormal ROC curves. Acad Radiol 14:814–829

    Article  PubMed  Google Scholar 

  34. Dorfman DD, Berbaum KS (2000) A contaminated binormal model for ROC data: part II. A formal model. Acad Radiol 7:427–437

    Article  CAS  PubMed  Google Scholar 

  35. Obuchowski NA (2007) New methodological tools for multiple-reader ROC studies. Radiology 243:10–12

    Article  PubMed  Google Scholar 

  36. Obuchowski NA (1995) Multireader, multimodality receiver operating characteristic curve studies: hypothesis testing and sample size estimation using an analysis of variance approach with dependent observations. Acad Radiol 2:S22–S29

    Article  PubMed  Google Scholar 

  37. Hillis SL (2007) A comparison of denominator degrees of freedom methods for multiple observer ROC analysis. Stat Med 26:596–619

    Article  PubMed  Google Scholar 

  38. Obuchowski NA (1997) Testing for equivalence of diagnostic tests. AJR Am J Roentgenol 168:13–17

    CAS  PubMed  Google Scholar 

  39. Gennaro G, di Maggio C (2006) Dose comparison between screen/film and full-field digital mammography. Eur Radiol 16:2559–2566

    Article  PubMed  Google Scholar 

  40. Samei E, Saunders RS, Baker JA, Delong DM (2007) Digital mammography: effects of reduced radiation dose on diangostic performance. Radiology 243:396–404

    Article  PubMed  Google Scholar 

  41. Svahn T, Hemdal B, Ruschin M, Chakraborty DP, Andersson I, Tingberg A, Mattsson S (2007) Dose reduction and its influence on diagnostic accuracy and radiation risk in digital mammography: an observer performance study using an anthropomorphic breast phantom. Br J Radiol 80:557–562

    Article  CAS  PubMed  Google Scholar 

  42. Dobbins JT III (2009) Tomosynthesis imaging: at a translational crossroads. Med Phys 36:1956–1967

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Luc Katz, Francesca Braga, Henri Souchay, Razvan Iordache, and Sylvain Bernard from GE Healthcare for helpful discussion and scientific debate, and Lorenzo Pesce from University of Chicago for his support on ROC fitting models.

A. Toledano (statistician) is consultant for GE Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisella Gennaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gennaro, G., Toledano, A., di Maggio, C. et al. Digital breast tomosynthesis versus digital mammography: a clinical performance study. Eur Radiol 20, 1545–1553 (2010). https://doi.org/10.1007/s00330-009-1699-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-009-1699-5

Keywords

Navigation