Skip to main content
Log in

Prospective ECG-triggered axial CT at 140-kV tube voltage improves coronary in-stent restenosis visibility at a lower radiation dose compared with conventional retrospective ECG-gated helical CT

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The purpose of this study was to compare coronary 64-slice CT angiography (CTA) protocols, specifically prospective electrocardiograph (ECG)-triggered and retrospective ECG-gated CT acquisition performed using a tube voltage of 140 kV and 120 kV, regarding intracoronary stent imaging. Coronary artery stents (n = 12) with artificial in-stent restenosis (50% luminal reduction, 40 HU) on a cardiac phantom were examined by CT at heart rates of 50–75 beats per minute (bpm). The subjective visibility of in-stent restenosis was evaluated with a three-point scale (1 clearly visible, 2 visible, and 3 not visible), and artificial lumen narrowing [(inner stent diameter − measured lumen diameter)/inner stent diameter], lumen attenuation increase ratio [(in-stent attenuation − coronary lumen attenuation)/coronary lumen attenuation], and signal-to-noise ratio of in-stent lumen were determined. The effective dose was estimated. The artificial lumen narrowing (mean 43%), the increase of lumen attenuation (mean 46%), and signal-to-noise ratio (mean 7.8) were not different between CT acquisitions (p = 0.12–0.91). However, the visibility scores of in-stent restenosis were different (p < 0.05) between ECG-gated CTA techniques: (a) 140-kV prospective (effective dose 4.6 mSv), 1.6; (b) 120-kV prospective (3.3 mSv), 1.8; (c) 140-kV retrospective (16.4–18.8 mSv), 1.9; and (d) 120-kV retrospective (11.0–13.4 mSv), 1.9. Thus, 140-kV prospective ECG-triggered CTA improves coronary in-stent restenosis visibility at a lower radiation dose compared with retrospective ECG-gated CTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Scanlon PJ, Faxon DP, Audet AM et al (1999) ACC/AHA guidelines for coronary angiography: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Coronary Angiography) developed in collaboration with the Society for Cardiac Angiography and Interventions. J Am Coll Cardiol 33:1756–1824

    Article  PubMed  CAS  Google Scholar 

  2. Hamon M, Champ-Rigot L, Morello R, Riddell JW, Hamon M (2008) Diagnostic accuracy of in-stent coronary restenosis detection with multislice spiral computed tomography: a meta-analysis. Eur Radiol 18:217–225

    Article  PubMed  Google Scholar 

  3. Schuijf JD, Pundziute G, Jukema JW et al (2007) Evaluation of patients with previous coronary stent implantation with 64-section CT. Radiology 245:410–423

    Article  Google Scholar 

  4. Das KM, El-Menyar AA, Salam AM et al (2007) Contrast-enhanced 64-section coronary multidetector CT angiography versus conventional coronary angiography for stent assessment. Radiology 245:424–432

    Article  PubMed  CAS  Google Scholar 

  5. Carrabba N, Bamoshmoosh M, Carusi LM et al (2007) Usefulness of 64-slice multidetector computed tomography for detecting drug eluting in-stent restenosis. Am J Cardiol 100:1754–1758

    Article  PubMed  Google Scholar 

  6. Hecht HS, Zaric M, Zaric V, Lubarsky L, Prakash M, Roubin G (2008) Usefulness of 64-detector computed tomographic angiography for diagnosing in-stent restenosis in native coronary arteries. Am J Cardiol 101:820–824

    Article  PubMed  Google Scholar 

  7. Manghat N, Lingen RV, Hewson P et al (2008) Usefulness of 64-detector row computed tomography for evaluation of intracoronary stents in symptomatic patients with suspected in-stent restenosis. Am J Cardiol 101:1567–1573

    Article  PubMed  Google Scholar 

  8. Suzuki J, Furui S, Kuwahara S et al (2007) Assessment of coronary stent in vitro on multislice computed tomography angiography: improved in-stent visibility by the use of 140-kV tube voltage. J Comput Assist Tomogr 31:414–421

    Article  PubMed  Google Scholar 

  9. Horiguchi J, Kiguchi M, Fujioka C et al (2008) Radiation dose, image quality, stenosis measurement, and CT densitometry using ECG-triggered coronary 64-MDCT angiography. A Phantom Study AJR 190:315–320

    Google Scholar 

  10. Hirai N, Horiguchi J, Fujioka C et al (2008) Prospective electrocardiography-triggered versus retrospective electrocardiography-gated 64-slice coronary CT angiography: image quality, stenoses assessment and radiation dose. Radiology 248:424–430

    Article  PubMed  Google Scholar 

  11. Hsieh J, Londt J, Vass M, Li J, Tang X, Okerlund D (2006) Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys 33:4236–4248

    Article  PubMed  Google Scholar 

  12. Cademartiri F, Mollet N, Lemos PA et al (2005) Usefulness of multislice computed tomographic coronary angiography to assess instent restenosis. Am J Cardiol 96:799–802

    Article  PubMed  Google Scholar 

  13. Maintz D, Seifarth H, Raupach R et al (2006) 64-slice multidetector coronary CT angiography: in vitro evaluation of 68 different stents. Eur Radiol 16:818–826

    Article  PubMed  Google Scholar 

  14. Seifarth H, Özgün M, Raupach R et al (2006) 64- versus 16-slice CT angiography for coronary artery stent assessment. In vitro experience. Invest Radiol 41:22–27

    Article  PubMed  Google Scholar 

  15. Seifarth H, Raupach R, Schaller S et al (2005) Assessment of coronary artery stents using 16-slice MDCT angiography: evaluation of a dedicated reconstruction kernel and a noise reduction filter. Eur Radiol 15:721–726

    Article  PubMed  Google Scholar 

  16. Menzel H, Schibilla H, Teunen D(eds) (2000) European guidelines on quality criteria for computed tomography. European Commission, Luxembourg. Available at http://www.drs.dk/guidelines/ct/quality/index.htm. Accessed Dec 2008

  17. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46

    Article  Google Scholar 

  18. Barrett JF, Keat N (2004) Artifacts in CT: recognition and avoidance. RadioGraphics 24:1679–1691

    Article  PubMed  Google Scholar 

  19. Husmann L, Valenta I, Gaemperli O (2008) Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur Heart J 29:191–197

    Article  PubMed  Google Scholar 

  20. Groen JM, Greuter MJW, van Ooijen PMA, Willems TP, Oudkerk M (2006) Initial results on visualization of coronary artery stents at multiple heart rates on a moving heart phantom using 64-MDCT. JCAT 30:812–817

    Google Scholar 

  21. Boll DT, Merkle EM, Paulson EK, Fleiter TR (2008) Coronary stent patency: dual-energy multidetector CT assessment in a pilot study with anthropomorphic phantom. Radiology 247:687–695

    Article  PubMed  Google Scholar 

  22. Mahnken AH, Seyfarth T, Flohr T et al (2005) Flat-panel detector computed tomography for the assessment of coronary artery stents: phantom study in comparison with 16-slice spiral computed tomography. Invest Radiol 40:8–13

    PubMed  Google Scholar 

  23. Rybicki FJ, Otero HJ, Steigner ML et al (2008) Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging 24:535–546

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Tsuchiya Foundation (http://www.tsuchiya-foundation.or.jp), Hiroshima, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Horiguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horiguchi, J., Fujioka, C., Kiguchi, M. et al. Prospective ECG-triggered axial CT at 140-kV tube voltage improves coronary in-stent restenosis visibility at a lower radiation dose compared with conventional retrospective ECG-gated helical CT. Eur Radiol 19, 2363–2372 (2009). https://doi.org/10.1007/s00330-009-1419-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-009-1419-1

Keywords

Navigation