Skip to main content
Log in

In vivo proton magnetic resonance spectroscopy of intraventricular tumours of the brain

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The aim of this study was to assess the usefulness of proton MR spectroscopy in the diagnosis of intraventricular tumours. Fifty-two intraventricular tumours pertaining to 16 different tumour types were derived from our database. All cases had single-voxel proton MR spectroscopy performed at TE at both 30 and 136 ms at 1.5 T. The Mann-Whitney U test was used to search for the most discriminative datapoints each tumour type. Characteristic trends were found for some groups: high Glx and Ala in meningiomas (p < 0.001 and p < 0.01, respectively), high mobile lipids in metastasis (p < 0.001), high Cho in PNET (p < 0.001), high mI + Gly in ependymoma (p < 0.001), high NAC (p < 0.01) in the absence of the normal brain parenchyma pattern in colloid cysts, and high mI/Gly and Ala in central neurocytoma. Proton MR spectroscopy provides additional metabolic information that could be useful in the diagnosis of intraventricular brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tate AR, Underwood J, Acosta DM et al (2006) Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra. NMR Biomed 19:411–434

    Article  PubMed  CAS  Google Scholar 

  2. Burtscher IM, Skagerberg G, Geijer B et al (2000) Proton MR spectroscopy and preoperative diagnostic accuracy: an evaluation of intracranial mass lesions characterised by stereotactic biopsy findings. AJNR Am J Neuroradiol 21:84–93

    PubMed  CAS  Google Scholar 

  3. Majós C, Alonso J, Aguilera C et al (2003) Proton magnetic resonance spectroscopy (1H MRS) of human brain tumours: assessment of differences between tumour types and its applicability in brain tumour categorization. Eur Radiol 13:582–591

    PubMed  Google Scholar 

  4. Law M, Yang S, Wang H et al (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 24:1989–1998

    PubMed  Google Scholar 

  5. Al-Okaili RN, Krejza J, Woo JH et al (2007) Intraaxial brain masses: MR Imaging-based diagnostic strategy–Initial experience. Radiology 243:539–550

    Article  PubMed  Google Scholar 

  6. Preul MC, Caramanos Z, Collins DL et al (1996) Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nat Med 2:323–325

    Article  PubMed  CAS  Google Scholar 

  7. Dowling C, Bollen AW, Noworolski SM et al (2001) Preoperative proton MR spectroscopy imaging of brain tumors: correlation with histopathologic analysis of resection specimens. AJNR Am J Neuroradiol 22:604–612

    PubMed  CAS  Google Scholar 

  8. Howe FA, Barton SJ, Cudlip SA et al (2003) Metabolic profiles of human brain tumors using quantitative in vivo 1H Magnetic resonance spectroscopy. Magn Reson Med 49:223–232

    Article  PubMed  CAS  Google Scholar 

  9. Panigrahy A, Krieger MD, Gonzalez-Gomez I et al (2006) Quantitative short echo time 1H-MR spectroscopy of untreated pediatric brain tumors: preoperative diagnosis and characterization. AJNR Am J Neuroradiol 27:560–572

    PubMed  CAS  Google Scholar 

  10. Chuang MT, Lin WC, Tsai HY et al (2005) 3-T proton magnetic resonance spectroscopy of central neurocytoma: 3 case reports and review of the literature. J Comput Assist Tomogr 29:683–688

    Article  PubMed  Google Scholar 

  11. Kim DG, Choe WJ, Chang KH et al (2000) In vivo proton magnetic resonance spectroscopy of central neurocytomas. Neurosurgery 46:329–334

    Article  PubMed  CAS  Google Scholar 

  12. Horská A, Ulug AM, Melhem ER et al (2001) Proton magnetic resonance spectroscopy of choroid plexus tumors in children. J Magn Reson Imaging 14:78–82

    Article  PubMed  Google Scholar 

  13. Krieger MD, Panigrahy A, McComb JG et al (2005) Differentiation of choroid plexus tumors by advanced magnetic resonance spectroscopy. Neurosurg Focus 18:E4

    PubMed  Google Scholar 

  14. Van den Boogaart A (1997) Quantitative data analysis of in vivo MRS data sets. Magn Reson Chem 35:S146–152

    Article  Google Scholar 

  15. Tate AR, Griffiths JR, Martínez-Pérez I et al (1998) Towards a method for automated classification of 1H MHRS spectra from brain tumours. NMR Biomed 11:177–191

    Article  PubMed  CAS  Google Scholar 

  16. Ladroue C, Howe FA, Griffiths JR, Tate AR (2003) Independent component analysis for automated decomposition of in vivo magnetic resonance spectra. Magn Reson Med 50:697–703

    Article  PubMed  CAS  Google Scholar 

  17. Candiota AP, Majós C, Bassols A et al (2004) Assignment of the 2.03 ppm resonance in in vivo 1H MRS of human brain tumour cystic fluid: contribution of macromolecules. MAGMA 17:36–46

    Article  PubMed  CAS  Google Scholar 

  18. Barba I, Moreno A, Martinez-Perez I et al (2001) Magnetic resonance spectroscopy of brain hemangiopericytomas: high myoinositol concentrations and discrimination from meningiomas. J Neurosurg 94:55–60

    Article  PubMed  CAS  Google Scholar 

  19. Wang Z, Sutton LN, Cnaan A et al (1995) Proton MR spectroscopy of pediatric cerebellar tumors. AJNR Am J Neuroradiol 16:1821–1833

    PubMed  CAS  Google Scholar 

  20. Ernst T, Hennig J (1991) Coupling effects in volume selective 1 H spectroscopy of major brain metabolites. Magn Reson Med 21:82–96

    Article  PubMed  CAS  Google Scholar 

  21. Poptani H, Gupta RK, Roy R et al (1995) Characterization of intracranial mass lesions with in vivo proton MR spectroscopy. AJNR Am J Neuroradiol 16:1593–1603

    PubMed  CAS  Google Scholar 

  22. Meyerand ME, Pipas JM, Mamourian A et al (1999) Classification of biopsy-confirmed brain tumors using single-voxel MR spectroscopy. AJNR Am J Neuroradiol 20:117–123

    PubMed  CAS  Google Scholar 

  23. Negendank WG, Sauter R, Brown TR et al (1996) Proton magnetic resonance spectroscopy in patients with glial tumors: a multicenter study. J Neurosurg 84:449–158

    Article  PubMed  CAS  Google Scholar 

  24. Majós C, Alonso J, Aguilera C et al (2002) Adult primitive neuroectodermal tumor: Proton MR Spectroscopic findings with possible application for differential diagnosis. Radiology 225:556–566

    Article  PubMed  Google Scholar 

  25. Kovanlikaya A, Panigrahy A, Krieger MD et al (2005) Untreated pediatric primitive neuroectodermal tumor in vivo: quantitation of taurine with MR spectroscopy. Radiology 236:1020–1025

    Article  PubMed  Google Scholar 

  26. Jelinek J, Smirniotopoulos JG, Parisi JE et al (1990) Lateral ventricular neoplasms of the brain: differential diagnosis based on clinical, CT, and MR findings. AJNR Am J Neuroradiol 11:567–574

    PubMed  CAS  Google Scholar 

  27. Majós C, Alonso J, Aguilera C et al (2003) Utility of proton MR spectroscopy in the diagnosis of radiologically atypical intracranial meningiomas. Neuroradiology 45:129–136

    PubMed  Google Scholar 

  28. Kinoshita Y, Yokota A (1997) Absolute concentrations of metabolites in human brain tumors using in vitro proton magnetic resonance spectroscopy. NMR Biomed 10:2–12

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carles Majós.

Additional information

Grants: This work was funded in part by MEDIVO2 (MEC SAF2005–03650), and Generalitat de Catalunya SGR2005–00863 and XT2004–51. CIBER-BBN is an initiative of “Instituto de Salud Carlos III” (ISCiii) of Spain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majós, C., Aguilera, C., Cos, M. et al. In vivo proton magnetic resonance spectroscopy of intraventricular tumours of the brain. Eur Radiol 19, 2049–2059 (2009). https://doi.org/10.1007/s00330-009-1357-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-009-1357-y

Keywords

Navigation