Skip to main content
Log in

Evaluation and comparison of cartilage repair tissue of the patella and medial femoral condyle by using morphological MRI and biochemical zonal T2 mapping

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The objective of this study was to use advanced MR techniques to evaluate and compare cartilage repair tissue after matrix-associated autologous chondrocyte transplantation (MACT) in the patella and medial femoral condyle (MFC). Thirty-four patients treated with MACT underwent 3-T MRI of the knee. Patients were treated on either patella (n = 17) or MFC (n = 17) cartilage and were matched by age and postoperative interval. For morphological evaluation, the MR observation of cartilage repair tissue (MOCART) score was used, with a 3D-True-FISP sequence. For biochemical assessment, T2 mapping was prepared by using a multiecho spin-echo approach with particular attention to the cartilage zonal structure. Statistical evaluation was done by analyses of variance. The MOCART score showed no significant differences between the patella and MFC (p ≥ 0.05). With regard to biochemical T2 relaxation, higher T2 values were found throughout the MFC (p < 0.05). The zonal increase in T2 values from deep to superficial was significant for control cartilage (p < 0.001) and cartilage repair tissue (p < 0.05), with an earlier onset in the repair tissue of the patella. The assessment of cartilage repair tissue of the patella and MFC afforded comparable morphological results, whereas biochemical T2 values showed differences, possibly due to dissimilar biomechanical loading conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hjelle K, Solheim E, Strand T, Muri R, Brittberg M (2002) Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy 18:730–734

    Article  PubMed  Google Scholar 

  2. Cohen ZA, Mow VC, Henry JH, Levine WN, Ateshian GA (2003) Templates of the cartilage layers of the patellofemoral joint and their use in the assessment of osteoarthritic cartilage damage. Osteoarthritis Cartilage 11:569–579

    Article  PubMed  CAS  Google Scholar 

  3. Eckstein F, Winzheimer M, Westhoff J et al (1998) Quantitative relationships of normal cartilage volumes of the human knee joint–assessment by magnetic resonance imaging. Anat Embryol (Berl) 197:383–390

    Article  CAS  Google Scholar 

  4. Clark AL, Barclay LD, Matyas JR, Herzog W (2003) In situ chondrocyte deformation with physiological compression of the feline patellofemoral joint. J Biomech 36:553–568

    Article  PubMed  CAS  Google Scholar 

  5. Kurkijarvi JE, Nissi MJ, Kiviranta I, Jurvelin JS, Nieminen MT (2004) Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 characteristics of human knee articular cartilage: topographical variation and relationships to mechanical properties. Magn Reson Med 52:41–46

    Article  PubMed  CAS  Google Scholar 

  6. Lyyra T, Kiviranta I, Vaatainen U, Helminen HJ, Jurvelin JS (1999) In vivo characterization of indentation stiffness of articular cartilage in the normal human knee. J Biomed Mater Res 48:482–487

    Article  PubMed  CAS  Google Scholar 

  7. Alparslan L, Winalski CS, Boutin RD, Minas T (2001) Postoperative magnetic resonance imaging of articular cartilage repair. Semin Musculoskelet Radiol 5:345–363

    Article  PubMed  CAS  Google Scholar 

  8. Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 85(A Suppl 2):58–69

    Google Scholar 

  9. Recht M, White LM, Winalski CS, Miniaci A, Minas T, Parker RD (2003) MR imaging of cartilage repair procedures. Skeletal Radiol 32:185–200

    PubMed  Google Scholar 

  10. Trattnig S, Millington SA, Szomolanyi P, Marlovits S (2007) MR imaging of osteochondral grafts and autologous chondrocyte implantation. Eur Radiol 17:103–118

    Article  PubMed  CAS  Google Scholar 

  11. Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S (2006) Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol 57:16–23

    Article  PubMed  Google Scholar 

  12. Burstein D, Velyvis J, Scott KT et al (2001) Protocol issues for delayed Gd(DTPA)(2−)-enhanced MRI: (dGEMRIC) for clinical evaluation of articular cartilage. Magn Res Med 45:36–41

    Article  CAS  Google Scholar 

  13. Lammentausta E, Kiviranta P, Nissi MJ et al (2006) T2 relaxation time and delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) of human patellar cartilage at 1.5 T and 9.4 T: Relationships with tissue mechanical properties. J Orthop Res 24:366–374

    Article  PubMed  CAS  Google Scholar 

  14. Mosher TJ, Dardzinski BJ (2004) Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 8:355–368

    Article  PubMed  Google Scholar 

  15. Smith HE, Mosher TJ, Dardzinski BJ et al (2001) Spatial variation in cartilage T2 of the knee. J Magn Reson Imaging 14:50–55

    Article  PubMed  Google Scholar 

  16. Goodwin DW, Wadghiri YZ, Dunn JF (1998) Micro-imaging of articular cartilage: T2, proton density, and the magic angle effect. Acad Radiol 5:790–798

    Article  PubMed  CAS  Google Scholar 

  17. Goodwin DW, Zhu H, Dunn JF (2000) In vitro MR imaging of hyaline cartilage: correlation with scanning electron microscopy. AJR Am J Roentgenol 174:405–409

    PubMed  CAS  Google Scholar 

  18. Rubenstein JD, Kim JK, Morova-Protzner I, Stanchev PL, Henkelman RM (1993) Effects of collagen orientation on MR imaging characteristics of bovine articular cartilage. Radiology 188:219–226

    PubMed  CAS  Google Scholar 

  19. Watrin-Pinzano A, Ruaud JP, Cheli Y et al (2004) Evaluation of cartilage repair tissue after biomaterial implantation in rat patella by using T2 mapping. Magn Reson Mater Phy 17:219–228

    Article  CAS  Google Scholar 

  20. White LM, Sussman MS, Hurtig M, Probyn L, Tomlinson G, Kandel R (2006) Cartilage T2 assessment: differentiation of normal hyaline cartilage and reparative tissue after arthroscopic cartilage repair in equine subjects. Radiology 241:407–414

    Article  PubMed  Google Scholar 

  21. Welsch GH, Mamisch TC, Domayer SE et al (2008) Cartilage T2 assessment at 3-T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures–initial experience. Radiology 247:154–161

    Article  PubMed  Google Scholar 

  22. Hangody L, Vasarhelyi G, Hangody LR et al (2008) Autologous osteochondral grafting—technique and long-term results. Injury 39(Suppl 1):S32–39

    Google Scholar 

  23. Buckwalter JA, Martin JA, Olmstead M, Athanasiou KA, Rosenwasser MP, Mow VC (2003) Osteochondral repair of primate knee femoral and patellar articular surfaces: implications for preventing post-traumatic osteoarthritis. Iowa Orthop J 23:66–74

    PubMed  CAS  Google Scholar 

  24. Duc SR, Pfirrmann CW, Koch PP, Zanetti M, Hodler J (2008) Internal knee derangement assessed with 3-minute three-dimensional isovoxel true FISP MR sequence: preliminary study. Radiology 246:526–535

    Article  PubMed  Google Scholar 

  25. Marlovits S, Striessnig G, Resinger CT et al (2004) Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging. Eur J Radiol 52:310–319

    Article  PubMed  Google Scholar 

  26. Duc SR, Koch P, Schmid MR, Horger W, Hodler J, Pfirrmann CW (2007) Diagnosis of articular cartilage abnormalities of the knee: prospective clinical evaluation of a 3D water-excitation true FISP sequence. Radiology 243:475–482

    Article  PubMed  Google Scholar 

  27. Duc SR, Pfirrmann CW, Schmid MR et al (2007) Articular cartilage defects detected with 3D water-excitation true FISP: prospective comparison with sequences commonly used for knee imaging. Radiology 245:216–223

    Article  PubMed  Google Scholar 

  28. Marlovits S, Zeller P, Singer P, Resinger C, Vecsei V (2006) Cartilage repair: generations of autologous chondrocyte transplantation. Eur J Radiol 57:24–31

    Article  PubMed  Google Scholar 

  29. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. New Engl J Med 331:889–895

    Article  PubMed  CAS  Google Scholar 

  30. Kiviranta P, Rieppo J, Korhonen RK, Julkunen P, Toyras J, Jurvelin JS (2006) Collagen network primarily controls Poisson’s ratio of bovine articular cartilage in compression. J Orthop Res 24:690–699

    Article  PubMed  Google Scholar 

  31. Ahmed AM, Burke DL (1983) In-vitro measurement of static pressure distribution in synovial joints—part I: tibial surface of the knee. J Biomech Eng 105:216–225

    PubMed  CAS  Google Scholar 

  32. Ahmed AM, Burke DL, Yu A (1983) In-vitro measurement of static pressure distribution in synovial joints—part II: retropatellar surface. J Biomech Eng 105:226–236

    Article  PubMed  CAS  Google Scholar 

  33. Athanasiou KA, Rosenwasser MP, Buckwalter JA, Malinin TI, Mow VC (1991) Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. J Orthop Res 9:330–340

    Article  PubMed  CAS  Google Scholar 

  34. Behrens P, Bitter T, Kurz B, Russlies M (2006) Matrix-associated autologous chondrocyte transplantation/implantation (MACT/MACI)—5-year follow-up. Knee 13:194–202

    Article  PubMed  Google Scholar 

  35. Dardzinski BJ, Laor T, Schmithorst VJ, Klosterman L, Graham TB (2002) Mapping T2 relaxation time in the pediatric knee: feasibility with a clinical 1.5-T MR imaging system. Radiology 225:233–239

    Article  PubMed  Google Scholar 

  36. Mosher TJ, Collins CM, Smith HE et al (2004) Effect of gender on in vivo cartilage magnetic resonance imaging T2 mapping. J Magn Reson Imaging 19:323–328

    Article  PubMed  Google Scholar 

  37. Gomez S, Toffanin R, Bernstorff S et al (2000) Collagen fibrils are differently organized in weight-bearing and not-weight-bearing regions of pig articular cartilage. J Exp Zool 287:346–352

    Article  PubMed  CAS  Google Scholar 

  38. Xia Y (2000) Heterogeneity of cartilage laminae in MR imaging. J Magn Reson Imaging 11:686–693

    Article  PubMed  CAS  Google Scholar 

  39. Xia Y (2000) Magic-angle effect in magnetic resonance imaging of articular cartilage—a review. Invest Radiol 35:602–621

    Article  PubMed  CAS  Google Scholar 

  40. Hambly K, Bobic V, Wondrasch B, Van Assche D, Marlovits S (2006) Autologous chondrocyte implantation postoperative care and rehabilitation: science and practice. Am J Sports Med 34:1020–1038

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goetz H. Welsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welsch, G.H., Mamisch, T.C., Quirbach, S. et al. Evaluation and comparison of cartilage repair tissue of the patella and medial femoral condyle by using morphological MRI and biochemical zonal T2 mapping. Eur Radiol 19, 1253–1262 (2009). https://doi.org/10.1007/s00330-008-1249-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-008-1249-6

Keywords

Navigation