Skip to main content

Advertisement

Log in

Structural magnetic resonance imaging in epilepsy

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Because of its sensitivity and high tissue contrast, magnetic resonance imaging (MRI) is the technique of choice for structural imaging in epilepsy. In this review the effect of using optimised scanning protocols and the use of high field MR systems on detection sensitivity is discussed. Also, the clinical relevance of adequate imaging in patients with focal epilepsy is highlighted. The most frequently encountered MRI findings in epilepsy are reported and their imaging characteristics depicted. Imaging focus will be on the diagnosis of hippocampal sclerosis and malformations of cortical development, two major causes of medically intractable focal epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sander JW (2003) The epidemiology of epilepsy revisited. Curr Opin Neurol 16:165–170

    Article  PubMed  Google Scholar 

  2. Commission on Neuroimaging of the International League Against Epilepsy (1997) Recommendations for neuroimaging of patients with epilepsy. Epilepsia 38:1255–1256

    Article  Google Scholar 

  3. Kuzniecky RI (2005) Neuroimaging of epilepsy: therapeutic implications. NeuroRx 2:384–393

    Article  PubMed  Google Scholar 

  4. Berg AT, Testa FM, Levy SR, Shinnar S (2000) Neuroimaging in children with newly diagnosed epilepsy: a community-based study. Pediatrics 106:527–532

    Article  PubMed  CAS  Google Scholar 

  5. King MA, Newton MR, Jackson GD et al (1998) Epileptology of the first-seizure presentation: a clinical, electroencephalographic, and magnetic resonance imaging study of 300 consecutive patients. Lancet 352:1007–1011

    Article  PubMed  CAS  Google Scholar 

  6. Griffiths PD, Coley SC, Connolly DJA et al (2005) MR imaging of patients with localisation-related seizures: initial experience at 3.0 T and relevance to the NICE guidelines. Clin Radiol 60:1090–1099

    Article  PubMed  CAS  Google Scholar 

  7. Urbach H, Hattingen J, Von Oertzen J et al (2004) MR imaging in the presurgical workup of patients with drug-resistant epilepsy. AJNR Am J Neuroradiol 25:919–926

    PubMed  Google Scholar 

  8. Cakirer S, Basak M, Mutlu A, Galip GM (2002) MR imaging in epilepsy that is refractory to medical therapy. Eur Radiol 12:549–558

    PubMed  CAS  Google Scholar 

  9. Lefkopoulos A, Haritanti A, Papadopoulou E, Karanikolas D, Fotiadis N, Dimitriadis AS (2005) Magnetic resonance imaging in 120 patients with intractable partial seizures: a preoperative assessment. Neuroradiology 47:352–361

    Article  PubMed  CAS  Google Scholar 

  10. Bernal B, Altman NR (2003) Evidence-based medicine: neuroimaging of seizures. Neuroimaging Clin N Am 13:211–224

    Article  PubMed  Google Scholar 

  11. Elster AD, Mirza W (1991) MR imaging in chronic partial epilepsy: role of contrast enhancement. AJNR Am J Neuroradiol 12:165–170

    PubMed  CAS  Google Scholar 

  12. Schaller B, Ruegg SJ (2003) Brain tumor and seizures: pathophysiology and its implications for treatment revisited. Epilepsia 44:1223–1232

    Article  PubMed  Google Scholar 

  13. Liigant A, Haldre S, Oun A et al (2001) Seizure disorders in patients with brain tumors. Eur Neurol 45:46–51

    Article  PubMed  CAS  Google Scholar 

  14. Hufnagel A, Weber J, Marks S et al (2003) Brain diffusion after single seizures. Epilepsia 44:54–63

    Article  PubMed  Google Scholar 

  15. Szabo K, Poepel A, Pohlmann-Eden B et al (2005) Diffusion-weighted and perfusion MRI demonstrates parenchymal changes in complex partial status epilepticus. Brain 128:1369–1376

    Article  PubMed  Google Scholar 

  16. von Oertzen J, Urbach H, Jungbluth S et al (2002) Standard magnetic resonance imaging is inadequate for patients with refractory focal epilepsy. J Neurol Neurosurg Psychiatry 73:643

    Article  Google Scholar 

  17. Urbach H (2005) Imaging of the epilepsies. Eur Radiol 15:494–500

    Article  PubMed  CAS  Google Scholar 

  18. Semah F, Picot MC, Adam C et al (1998) Is the underlying cause of epilepsy a major prognostic factor for recurrence? Neurology 51:1256

    PubMed  CAS  Google Scholar 

  19. Engel J Jr, Wiebe S, French J et al (2003) Practice parameter: temporal lobe and localized neocortical resections for epilepsy: report of the Quality Standards Subcommittee of the American Academy of Neurology, in association with the American Epilepsy Society and the American Association of Neurological Surgeons. Neurology 60:538–547

    PubMed  Google Scholar 

  20. Langfitt JT (1997) Cost-effectiveness of anterotemporal lobectomy in medically intractable complex partial epilepsy. Epilepsia 38:154–163

    Article  PubMed  CAS  Google Scholar 

  21. Wiebe S, Blume WT, Girvin JP, Eliasziw M (2001) A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med 345:311

    Article  PubMed  CAS  Google Scholar 

  22. Kuzniecky R, Burgard S, Faught E, Morawetz R, Bartolucci A (1993) Predictive value of magnetic resonance imaging in temporal lobe epilepsy surgery. Arch Neurol 50:65–69

    PubMed  CAS  Google Scholar 

  23. Berkovic SF, McIntosh AM, Kalnins RM et al (1995) Preoperative MRI predicts outcome of temporal lobectomy: an actuarial analysis. Neurology 45:1358–1363

    PubMed  CAS  Google Scholar 

  24. Gilliam F, Faught E, Martin R et al (2000) Predictive value of MRI-identified mesial temporal sclerosis for surgical outcome in temporal lobe epilepsy: an intent-to-treat analysis. Epilepsia 41:963–966

    Article  PubMed  CAS  Google Scholar 

  25. Jack CR Jr, Rydberg CH, Krecke KN et al (1996) Mesial temporal sclerosis: diagnosis with fluid-attenuated inversion-recovery versus spin-echo MR imaging. Radiology 199:367–373

    PubMed  Google Scholar 

  26. Jackson GD, Berkovic SF, Duncan JS, Connelly A (1993) Optimizing the diagnosis of hippocampal sclerosis using MR imaging. AJNR Am J Neuroradiol 14:753–762

    PubMed  CAS  Google Scholar 

  27. Sawaishi Y, Sasaki M, Yano T, Hirayama A, Akabane J, Takada G (2005) A hippocampal lesion detected by high-field 3 Tesla magnetic resonance imaging in a patient with temporal lobe epilepsy. Tohoku J Exp Med 205:287–291

    Article  PubMed  Google Scholar 

  28. Briellmann RS, Kalnins RM, Berkovic SF, Jackson GD (2002) Hippocampal pathology in refractory temporal lobe epilepsy: T2-weighted signal change reflects dentate gliosis. Neurology 58:265–271

    PubMed  Google Scholar 

  29. Oppenheim C, Dormont D, Biondi A et al (1998) Loss of digitations of the hippocampal head on high-resolution fast spin-echo MR: a sign of mesial temporal sclerosis. AJNR Am J Neuroradiol 19:457–463

    PubMed  CAS  Google Scholar 

  30. Jackson GD, Briellmann RS, Kuzniecky RI (2005) Temporal lobe epilepsy. In: Kuzniecky RI, Jackson GD (eds) Magnetic resonance in epilepsy, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  31. Achten E, Deblaere K, De Wagter C et al (1998) Intra- and interobserver variability of MRI-based volume measurements of the hippocampus and amygdala using the manual ray-tracing method. Neuroradiology 40:558–566

    Article  PubMed  CAS  Google Scholar 

  32. Kuzniecky R (2004) Clinical applications of MR spectroscopy in epilepsy. Neuroimaging Clin N Am 14:507–516

    Article  PubMed  Google Scholar 

  33. Bernasconi A, Bernasconi N, Caramanos Z et al (2000) T2 relaxometry can lateralize mesial temporal lobe epilepsy in patients with normal MRI. Neuroimage 12:739–746

    Article  PubMed  CAS  Google Scholar 

  34. Salmenpera TM, Simister RJ, Bartlett P et al (2006) High-resolution diffusion tensor imaging of the hippocampus in temporal lobe epilepsy. Epilepsy Res 71:102–106

    Article  PubMed  Google Scholar 

  35. Dumas de la Roque A, Oppenheim C, Chassoux F et al (2005) Diffusion tensor imaging of partial intractable epilepsy. Eur Radiol 15:279–285

    Article  PubMed  Google Scholar 

  36. Barkovich AJ, Raybaud CA (2004) Malformations of cortical development. Neuroimaging Clin N Am 14:401–423

    Article  PubMed  Google Scholar 

  37. Barkovich AJ, Raybaud CA (2004) Neuroimaging in disorders of cortical development. Neuroimaging Clin N Am 14:231–254, viii

    Article  PubMed  Google Scholar 

  38. Barkovich AJ, Kuzniecky RI, Jackson GD, Guerrini R, Dobyns WB (2001) Classification system for malformations of cortical development: update 2001. Neurology 57:2168–2178

    PubMed  CAS  Google Scholar 

  39. Ruggieri PM, Najm I, Bronen R et al (2004) Neuroimaging of the cortical dysplasias. Neurology 62:S27–S29

    Article  PubMed  CAS  Google Scholar 

  40. Barkovich AJ, Kjos BO (1992) Gray matter heterotopias: MR characteristics and correlation with developmental and neurologic manifestations. Radiology 182:493–499

    PubMed  CAS  Google Scholar 

  41. Kuzniecky R, Andermann F, Guerrini R (1993) Congenital bilateral perisylvian syndrome: study of 31 patients. The CBPS Multicenter Collaborative Study. Lancet 341:608–612

    Article  PubMed  CAS  Google Scholar 

  42. Palmini A, Najm I, Avanzini G et al (2004) Terminology and classification of the cortical dysplasias. Neurology 62:S2–S8

    PubMed  CAS  Google Scholar 

  43. Tassi L, Colombo N, Garbelli R et al (2002) Focal cortical dysplasia: neuropathological subtypes, EEG, neuroimaging and surgical outcome. Brain 125:1719–1732

    Article  PubMed  CAS  Google Scholar 

  44. Colombo N, Tassi L, Galli C et al (2003) Focal cortical dysplasias: MR imaging, histopathologic, and clinical correlations in surgically treated patients with epilepsy. AJNR Am J Neuroradiol 24:724–733

    PubMed  Google Scholar 

  45. Palmini A, Gambardella A, Andermann F et al (1995) Intrinsic epileptogenicity of human dysplastic cortex as suggested by corticography and surgical results. Ann Neurol 37:476–487

    Article  PubMed  CAS  Google Scholar 

  46. Gambardella A, Palmini A, Andermann F et al (1996) Usefulness of focal rhythmic discharges on scalp EEG of patients with focal cortical dysplasia and intractable epilepsy. Electroencephalogr Clin Neurophysiol 98:243–249

    Article  PubMed  CAS  Google Scholar 

  47. Bastos AC, Comeau RM, Andermann F et al (1999) Diagnosis of subtle focal dysplastic lesions: curvilinear reformatting from three-dimensional magnetic resonance imaging. Ann Neurol 46:88–94

    Article  PubMed  CAS  Google Scholar 

  48. Chan S, Chin SS, Nordli DR, Goodman RR, DeLaPaz RL, Pedley TA (1998) Prospective magnetic resonance imaging identification of focal cortical dysplasia, including the non-balloon cell subtype. Ann Neurol 44:749–757

    Article  PubMed  CAS  Google Scholar 

  49. Bronen RA, Vives KP, Kim JH, Fulbright RK, Spencer SS, Spencer DD (1997) Focal cortical dysplasia of Taylor, balloon cell subtype: MR differentiation from low-grade tumors. AJNR Am J Neuroradiol 18:1141–1151

    PubMed  CAS  Google Scholar 

  50. Lee BC, Schmidt RE, Hatfield GA, Bourgeois B, Park TS (1998) MRI of focal cortical dysplasia. Neuroradiology 40:675–683

    Article  PubMed  CAS  Google Scholar 

  51. Barkovich AJ, Kuzniecky RI, Bollen AW, Grant PE (1997) Focal transmantle dysplasia: a specific malformation of cortical development. Neurology 49:1148–1152

    PubMed  CAS  Google Scholar 

  52. Daumas-Duport C, Scheithauer BW, Chodkiewicz JP, Laws ER Jr, Vedrenne C (1988) Dysembryoplastic neuroepithelial tumor: a surgically curable tumor of young patients with intractable partial seizures. Report of thirty-nine cases. Neurosurgery 23:545–556

    Article  PubMed  CAS  Google Scholar 

  53. Fernandez C, Girard N, Paz Paredes A, Bouvier-Labit C, Lena G, Figarella-Branger D (2003) The usefulness of MR imaging in the diagnosis of dysembryoplastic neuroepithelial tumor in children: a study of 14 cases. AJNR Am J Neuroradiol 24:829–834

    PubMed  Google Scholar 

  54. Tampieri D, Moumdjian R, Melanson D, Ethier R (1991) Intracerebral gangliogliomas in patients with partial complex seizures: CT and MR imaging findings. AJNR Am J Neuroradiol 12:749–755

    PubMed  CAS  Google Scholar 

  55. Provenzale JM, Ali U, Barboriak DP, Kallmes DF, Delong DM, McLendon RE (2000) Comparison of patient age with MR imaging features of gangliogliomas. AJR Am J Roentgenol 174:859–862

    PubMed  CAS  Google Scholar 

  56. Luyken C, Blumcke I, Fimmers R et al (2003) The spectrum of long-term epilepsy-associated tumors: long-term seizure and tumor outcome and neurosurgical aspects. Epilepsia 44:822–830

    Article  PubMed  Google Scholar 

  57. Awad I, Jabbour P (2006) Cerebral cavernous malformations and epilepsy. Neurosurg Focus 21:e7

    Article  PubMed  Google Scholar 

  58. Knake S, Triantafyllou C, Wald LL et al (2005) 3T phased array MRI improves the presurgical evaluation in focal epilepsies: a prospective study. Neurology 65:1026–1031

    Article  PubMed  CAS  Google Scholar 

  59. Moore KR, Funke ME, Constantino T, Katzman GL, Lewine JD (2002) Magnetoencephalographically directed review of high-spatial-resolution surface-coil MR images improves lesion detection in patients with extratemporal epilepsy. Radiology 225:880–887

    Article  PubMed  Google Scholar 

  60. Lee DH (2006) High-resolution magnetic resonance imaging (MRI), surface coil MRI, and magnetoencephalography. Adv Neurol 97:279–283

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Deblaere.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deblaere, K., Achten, E. Structural magnetic resonance imaging in epilepsy. Eur Radiol 18, 119–129 (2008). https://doi.org/10.1007/s00330-007-0710-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-007-0710-2

Keywords

Navigation