Skip to main content
Log in

Flat panel computed tomography of human ex vivo heart and bone specimens: initial experience

  • Computer Tomography
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The aim of this technical investigation was the detailed description of a prototype flat panel detector computed tomography system (FPCT) and its initial evaluation in an ex vivo setting. The prototype FPCT scanner consists of a conventional radiographic flat panel detector, mounted on a multi-slice CT scanner gantry. Explanted human ex vivo heart and foot specimens were examined. Images were reformatted with various reconstruction algorithms and were evaluated for high-resolution anatomic information. For comparison purposes, the ex vivo specimens were also scanned with a conventional 16-detector-row CT scanner (Sensation 16, Siemens Medical Solutions, Forchheim, Germany). With the FPCT prototype used, a 1,024×768 resolution matrix can be obtained, resulting in an isotropic voxel size of 0.25×0.25×0.25 mm at the iso-center. Due to the high spatial resolution, very small structures such as trabecular bone or third-degree, distal branches of coronary arteries could be visualized. This first evaluation showed that flat panel detector systems can be used in a cone-beam computed tomography scanner and that very high spatial resolutions can be achieved. However, there are limitations for in vivo use due to constraints in low contrast resolution and slow scan speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Flohr T, Stierstorfer K, Bruder H, Simon J, Schaller S (2002) New technical developments in multislice CT—part 1: approaching isotropic resolution with sub-millimeter 16-slice scanning. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 174(7):839–845

    Article  CAS  PubMed  Google Scholar 

  2. Bruder H, Kachelriess M, Schaller S, Stierstorfer K, Flohr T (2000) Single-slice rebinning reconstruction in spiral cone-beam computed tomography. IEEE Trans Med Imaging 19(9):873–887

    Article  CAS  PubMed  Google Scholar 

  3. Ludwig K, Henschel A, Bernhardt TM, Lenzen H, Wormanns D, Diederich S et al (2003) Performance of a flat-panel detector in the detection of artificial erosive changes: comparison with conventional screen-film and storage-phosphor radiography. Eur Radiol 13(6):1316–1323

    PubMed  Google Scholar 

  4. Kotter E, Langer M (2002) Digital radiography with large-area flat-panel detectors. Eur Radiol 12(10):2562–2570

    CAS  PubMed  Google Scholar 

  5. Kalender WA (2003) The use of flat-panel detectors for CT imaging. Radiologe 43(5):379–387

    Article  CAS  PubMed  Google Scholar 

  6. Volk M, Hamer OW, Feuerbach S, Strotzer M (2004) Dose reduction in skeletal and chest radiography using a large-area flat-panel detector based on amorphous silicon and thallium-doped cesium iodide: technical background, basic image quality parameters, and review of the literature. Eur Radiol 14(5):827–834

    Article  PubMed  Google Scholar 

  7. Groh BA, Siewerdsen JH, Drake DG, Wong JW, Jaffray DA (2002) A performance comparison of flat-panel imager-based MV and kV cone-beam CT. Med Phys 29(6):967–975

    Article  CAS  PubMed  Google Scholar 

  8. Jaffray DA, Siewerdsen JH (2000) Cone-beam computed tomography with a flat-panel imager: initial performance characterization. Med Phys 27(6):1311–1323

    Article  CAS  PubMed  Google Scholar 

  9. Knollmann F, Pfoh A (2003) Image in cardiovascular medicine. Coronary artery imaging with flat-panel computed tomography. Circulation 107(8):1209

    Article  CAS  PubMed  Google Scholar 

  10. Zeng GL, Gullberg GT (1992) A cone-beam tomography algorithm for orthogonal circle-and-line orbit. Phys Med Biol 37(3):563–577

    Article  CAS  PubMed  Google Scholar 

  11. Flohr T, Bruder H, Stierstorfer K, Simon J, Schaller S, Ohnesorge B (2002) New technical developments in multislice CT, part 2: sub-millimeter 16-slice scanning and increased gantry rotation speed for cardiac imaging. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 174(8):1022–1027

    Article  CAS  PubMed  Google Scholar 

  12. Wintersperger BJ, Nikolaou K, Jakobs TF, Reiser MF, Becker CR (2003) Cardiac multidetector-row computed tomography: initial experience using 16 detector-row systems. Crit Rev Comput Tomogr 44(1):27–45

    Google Scholar 

  13. Nikolaou K, Poon M, Sirol M, Becker CR, Fayad ZA (2003) Complementary results of computed tomography and magnetic resonance imaging of the heart and coronary arteries: a review and future outlook. Cardiol Clin 21(4):639–655

    PubMed  Google Scholar 

  14. Dewey M, Borges AC, Kivelitz D, Taupitz M, Wagner S, Baumann G et al (2004) Coronary artery disease: new insights and their implications for radiology. Eur Radiol 14(6):1048–1054

    Article  PubMed  Google Scholar 

  15. Fayad ZA, Fuster V, Nikolaou K, Becker C (2002) Computed tomography and magnetic resonance imaging for noninvasive coronary angiography and plaque imaging: current and potential future concepts. Circulation 106(15):2026–2034

    Article  PubMed  Google Scholar 

  16. Anxionnat R, Bracard S, Macho J, Da Costa E, Vaillant R, Launay L et al (1998) 3D angiography. Clinical interest. First applications in interventional neuroradiology. J Neuroradiol 25(4):251–262

    CAS  PubMed  Google Scholar 

  17. El Sheik M, Heverhagen JT, Alfke H, Froelich JJ, Hornegger J, Brunner T et al (2001) Multiplanar reconstructions and three-dimensional imaging (computed rotational osteography) of complex fractures by using a C-arm system: initial results. Radiology 221(3):843–849

    PubMed  Google Scholar 

  18. Linsenmaier U, Rock C, Euler E, Wirth S, Brandl R, Kotsianos D et al (2002) Three-dimensional CT with a modified C-arm image intensifier: feasibility. Radiology 224(1):286–292

    PubMed  Google Scholar 

  19. Ning R, Chen B, Yu R, Conover D, Tang X, Ning Y (2000) Flat panel detector-based cone-beam volume CT angiography imaging: system evaluation. IEEE Trans Med Imaging 19(9):949–963

    Article  CAS  PubMed  Google Scholar 

  20. Ning R, Tang X, Conover D, Yu R (2003) Flat panel detector-based cone beam computed tomography with a circle-plus-two-arcs data acquisition orbit: preliminary phantom study. Med Phys 30(7):1694–1705

    Article  PubMed  Google Scholar 

  21. Spahn M, Heer V, Freytag R (2003) Flat-panel detectors in X-ray systems. Radiologe 43(5):340–350

    Article  CAS  PubMed  Google Scholar 

  22. Shin HO, Falck CV, Galanski M (2004) Low-contrast detectability in volume rendering: a phantom study on multidetector-row spiral CT data. Eur Radiol 14(2):341–349

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Nikolaou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolaou, K., Flohr, T., Stierstorfer, K. et al. Flat panel computed tomography of human ex vivo heart and bone specimens: initial experience. Eur Radiol 15, 329–333 (2005). https://doi.org/10.1007/s00330-004-2537-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-004-2537-4

Keywords

Navigation