Skip to main content

Advertisement

Log in

In vivo tracking of genetically engineered, anti-HER2/neu directed natural killer cells to HER2/neu positive mammary tumors with magnetic resonance imaging

European Radiology Aims and scope Submit manuscript

Abstract

The purpose of this study is to optimize labeling of the human natural killer (NK) cell line NK-92 with iron-oxide-based contrast agents and to monitor the in vivo distribution of genetically engineered NK-92 cells, which are directed against HER2/neu receptors, to HER2/neu positive mammary tumors with magnetic resonance (MR) imaging. Parental NK-92 cells and genetically modified HER2/neu specific NK-92-scFv(FRP5)-zeta cells, expressing a chimeric antigen receptor specific to the tumor-associated ErbB2 (HER2/neu) antigen, were labeled with ferumoxides and ferucarbotran using simple incubation, lipofection and electroporation techniques. Labeling efficiency was evaluated by MR imaging, Prussian blue stains and spectrometry. Subsequently, ferucarbotran-labeled NK-92-scFv(FRP5)-zeta (n=3) or parental NK-92 cells were intravenously injected into the tail vein of six mice with HER2/neu-positive NIH 3T3 mammary tumors, implanted in the mammary fat pad. The accumulation of the cells in the tumors was monitored by MR imaging before and 12 and 24 h after cell injection (p.i.). MR data were correlated with histopathology. Both the parental NK-92 and the genetically modified NK-92-scFv(FRP5)-zeta cells could be labeled with ferucarbotran and ferumoxides by lipofection and electroporation, but not by simple incubation. The intracellular cytoplasmatic iron-oxide uptake was significantly higher after labeling with ferucarbotran than ferumoxides (P<0.05). After intravenous injection of 5×106 NK-92-scFv(FRP5)-zeta cells into tumor-bearing mice, MR showed a progressive signal decline in HER2/neu-positive mammary tumors at 12 and 24 h (p.i.). Conversely, injection of 5×106 parental NK-92 control cells, not directed against HER2/neu receptors, did not cause significant signal intensity changes of the tumors. Histopathology confirmed an accumulation of the former, but not the latter cells in tumor tissue. The human natural killer cell line NK-92 can be efficiently labeled with clinically applicable iron-oxide contrast agents, and the accumulation of these labeled cells in murine tumors can be monitored in vivo with MR imaging. This MR cell tracking technique may be applied to monitor NK-cell based immunotherapies in patients in order to assess the presence and extent of NK-cell tumor accumulations and, thus, to determine therapy response early and non-invasively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tam YK, Miyagawa B, Ho VC, Klingemann HG (1999) Immunotherapy of malignant melanoma in a SCID mouse model using the highly cytotoxic natural killer cell line NK-92. J Hematother 8:281–290

    Article  CAS  PubMed  Google Scholar 

  2. Raulet DH, Vance RE, McMahon CW (2001) Regulation of the natural killer cell receptor repertoire. Annu Rev Immunol 19:291–330

    Google Scholar 

  3. Whiteside TL (1998) Immune cells in the tumor microenvironment. Mechanisms responsible for functional and signaling defects. Adv Exp Med Biol 451:167–171

    Google Scholar 

  4. Mulatero CW, Penson RT, Papamichael D, Gower NH, Evans M, Rudd RM (2001) A phase II study of combined intravenous and subcutaneous interleukin-2 in malignant pleural mesothelioma. Lung Cancer 31(1):67–72

    Google Scholar 

  5. Maraninchi D, Vey N, Viens P, Stoppa AM, Archimbaud E, Attal M, Baume D, Bouabdallah R, Demeoq F, Fleury J, Michallet M, Olive D, Reiffers J, Sainty D, Tabilio A, Tiberghien P, Brandely M, Hercend T, Blaise D (1998) A phase II study of interleukin-2 in 49 patients with relapsed or refractory acute leukemia. Leuk Lymphoma 31(3–4):343–349

    Google Scholar 

  6. Yan Y, Steinherz P, Klingemann HG, Dennig D, Childs BH, McGuirk J, O’Reilly RJ (1998) Antileukemia activity of a natural killer cell line against human leukemias. Clin Cancer Res 4:2859–2868

    Google Scholar 

  7. Nagayama H, Takahashi S, Takahashi T et al (1999) IL-2/LAK therapy for refractory acute monoblastic leukemia relapsing after unrelated allogeneic bone marrow transplantation. Bone Marrow Transplant 23:183–185

    Google Scholar 

  8. Kimoto Y, Tanaka T, Tanji Y, Fujiwara A, Taguchi T (1994) Use of human leukocyte antigen-mismatched allogeneic lymphokine-activated killer cells and interleukin-2 in the adoptive immunotherapy of patients with malignancies. Biotherapy 8:41–50

    Google Scholar 

  9. Tonn T, Becker S, Esser R, Schwabe D, Seifried E (2001) Cellular immunotherapy of malignancies using the clonal natural killer cell line NK-92. J Hematother Stem Cell Res 10:535–544

    Google Scholar 

  10. Gong JH, Maki G, Klingemann HG (1994) Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia 8(4):652–658

    Google Scholar 

  11. Uherek C, Tonn T, Uherek B, Becker S, Schnierle B, Klingemann H-G, Wels W (2002) Retargeting of NK-cell cytolytic activity to ErbB2 expressing tumor cells results in efficient and selective tumor cell destruction. Blood 100:1265–1273

    Google Scholar 

  12. Klapper LN, Kirschbaum MH, Sela M, Yarden Y (2000) Biochemical and clinical implications of the ErbB/HER signaling network of growth factor receptors. Adv Cancer Res 77:25–79

    CAS  PubMed  Google Scholar 

  13. Olayioye MA, Neve RM, Lane HA, Hynes NE (2000) NEW EMBO MEMBERS’ REVIEW: the ErbB signaling network: receptor heterodimerization in development and cancer. Embo J 19:3159–3167

    Article  CAS  PubMed  Google Scholar 

  14. Fawwaz R, Oluwole T, Wang N, Kuromoto N, Iga C, Hardy M, Alderson P (1985) Biodistribution of radiolabeled lymphocytes. Radiology 155:483–486

    Google Scholar 

  15. Melder RJ, Brownell AL, Shoup TM, Brownell GL, Jain RK (1993) Imaging of activated natural killer cells in mice by positron emission tomography: preferential uptake in tumors. Cancer Res 53(24):5867–5871

    Google Scholar 

  16. Adonai N, Nguyen KN, Walsh J, Iyer M, Toyokuni T, Phelps ME, McCarthy T, McCarthy DW, Gambhir SS (2002) Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc Natl Acad Sci USA 99(5):3030–3035

    Google Scholar 

  17. Moore A, Grimm J, Han B, Santamaria P (2004) Tracking the recruitment of diabetogenic CD8+ T-cells to the pancreas in real time. Diabetes 53(6):1459–1466

    CAS  PubMed  Google Scholar 

  18. Oostendorp RA, Ghaffari S, Eaves CJ (2000) Kinetics of in vivo homing and recruitment into cycle of hematopoietic cells are organ-specific but CD44-independent. Bone Marrow Transplant 26(5):559–566

    Google Scholar 

  19. Daldrup-Link HE, Rudelius M, Metz S, Piontek G, Settles M, Pichler B, Heinzmann U, Weinmann HJ, Schlegel J, Link TM, Rummeny EJ, Oostendorp RAJ (2004) Stem cell tracking with Gadophrin-2—a trifunctional contrast agent for MR imaging, optical imaging and fluorescence microscopy. Eur J Nucl Med Mol Imaging 31(9):1312–1321

    Google Scholar 

  20. Lewin M, Carlesso N, Tung C-H, Tang X-W, Cory D, Scadden D, Weissleder R (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414

    Google Scholar 

  21. Daldrup-Link HE, Rudelius M, Piontek G, Metz S, Bräuer R, Debus G, Corot C, Schlegel J, Link TM, Peschel C, Rummeny EJ, Oostendorp RAJ (2004) Migration of iron oxide labeled human hematopoietic progenitor cells in a xenotransplant model: in vivo monitoring using clinical magnetic resonance imaging equipment. Radiology (in press)

    Google Scholar 

  22. Smirnov P, Gazeau F, Lewin M, Bacri JC, Siauve N, Vayssettes C, Cuenod CA, Clemont O (2004) In vivo cellular imaging of magnetically labeled hybridomas in the spleen with a 1.5 T clinical MR system. Magn Reson Med 52(1):73–79

    Google Scholar 

  23. Weissleder R, Cheng H, Bogdanova A, Bogdanov A (1997) Magnetically labeled cells can be detected by MR imaging. J Magn Reson Imaging 7:258–263

    CAS  PubMed  Google Scholar 

  24. Schoepf U, Marecos E, Melder R, Jain R, Weissleder R (1998) Intracellular magnetic labeling of lymphocytes for in vivo trafficking studies. BioTechniques 24:642–651

    Google Scholar 

  25. Yeh T, Zhang W, Ildstad S, Ho C (1995) In vivo dynamic MRI tracking of rat T-cells labeled with superparamagnetic iron oxide particles. Magn Res Med 33:200–208

    Google Scholar 

  26. Metz S, Bonaterra G, Rudelius M, Settles M, Rummeny EJ, Daldrup-Link HE (2004) Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur Radiol 14:1851–1858

    Google Scholar 

  27. Klingemann H, Wong E, Maki G (1996) A cytotoxic NK-cell line (NK-92) for ex vivo purging of leukemia from blood. Biol Blood Marrow Transplant 2:68–75

    Google Scholar 

  28. Uherek C, Groner B, Wels W (2001) Chimeric antigen receptors for the retargeting of cytotoxic effector cells. J Hematother Stem Cell Res 10:523–534

    Google Scholar 

  29. Weissleder R (1994) Liver MR imaging with iron oxides: toward consensus and clinical practice. Radiology 193(3):593–595

    Google Scholar 

  30. Jung CW (1995) Surface properties of superparamagnetic iron oxide MR contrast agents: ferrumoxides, ferrumoxtran, ferrumoxisil. Magn Res Imag 13:675–691

    Article  CAS  Google Scholar 

  31. Wang YX, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11(11):2319–2331

    Article  CAS  PubMed  Google Scholar 

  32. Reimer P, Balzer T (2003) Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol 13(6):1266–1276

    PubMed  Google Scholar 

  33. Felgner P, Gadek T, Holm M et al (1987) Lipofectin: a highly efficient, lipid mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84:7413–7417

    Google Scholar 

  34. Maasho K, Marusina A, Reynolds NM, Coligan JE, Borrego F (2004) Efficient gene transfer into the human natural killer cell line, NKL, using the amaxa nucleofection system. J Immunol Methods 284:133–140

    Google Scholar 

  35. Wolff S, Balaban R (1997) Assessing contrast on MR images. Radiology 202:25–29

    Google Scholar 

  36. Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, Slamon DJ, Murphy M, Novotny WF, Burchmore M, Shak S, Stewart SJ, Press M (2002) Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20:719–726

    Article  PubMed  Google Scholar 

  37. Lai JC, Yuan C, Thomas JL (2002) Single-cell measurements of polyamidoamine dendrimer binding. Ann Biomed Eng 30(3):409–416

    Google Scholar 

  38. Ruihua C, Greene EL, Collinsworth G, Grewal JS, Houghton O, Zeng H, Garnovskaya M, Paul RV, Raymond JR (1999) Enrichment of transiently transfected mesangial cells by cell sorting after cotransfection with GFP. Am J Physiol 276 (Renal Physiol 45):F777–F785

    Google Scholar 

  39. Daldrup-Link HE, Rudelius M, Oostendorp RAJ, Settles M, Piontek G, Metz S, Heinzmann U, Rummeny EJ, Schlegel J, Link TM (2003) Targeting of hematopoietic progenitor cells with MR contrast agents. Radiology 228:760–767

    PubMed  Google Scholar 

  40. Arbab AS, Bashaw LA, Miller BR, Jordan EK, Bulte JW, Frank JA (2003) Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation: methods and techniques. Transplantation 76(7):1123–1130

    Google Scholar 

  41. Bulte JW, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK, Zywicke H, Miller B, van Gelderen P, Moskowitz BM, Duncan ID, Frank JA (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19(12):1141–1147

    Article  CAS  PubMed  Google Scholar 

  42. van den Bos EJ, Wagner A, Mahrholdt H, Thompson RB, Morimoto Y, Sutton BS, Judd RM, Taylor DA (2004) Improved efficacy of stem cell labeling for magnetic resonance imaging studies by the use of cationic liposomes. Cell Transplant 12(7):743–756

    Google Scholar 

Download references

Acknowledgments

This work was supported by an ECR foundation grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike E. Daldrup-Link.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daldrup-Link, H.E., Meier, R., Rudelius, M. et al. In vivo tracking of genetically engineered, anti-HER2/neu directed natural killer cells to HER2/neu positive mammary tumors with magnetic resonance imaging. Eur Radiol 15, 4–13 (2005). https://doi.org/10.1007/s00330-004-2526-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-004-2526-7

Keywords

Navigation