Skip to main content
Log in

Imaging the lymphatic system: possibilities and clinical applications

  • Oncology
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The lymphatic system is anatomically complex and difficult to image. Lymph ducts are responsible for the drainage of part of the body’s interstitial fluid. Lymph nodes account for the enrichment of lymph fluid, and can be involved in a large variety of diseases, especially cancer. For a long time, lymphatic imaging was limited to the sole use of conventional lymphography involving invasive procedures and patient discomfort. New contrast agents and techniques in ultrasound, nuclear medicine, and MR imaging are now available for imaging of both the lymphatic vessels and the lymph nodes. The objective of this review is to discuss the different imaging modalities of the lymphatic system, with a special focus on the new possibilities of lymphatic imaging including enhanced MR lymphography, sentinel node and positron emission tomography imaging, and contrast-enhanced ultrasound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3a–c
Fig. 4a–c
Fig. 5a–c
Fig. 6
Fig. 7a, b
Fig. 8a, b

Similar content being viewed by others

References

  1. Witte CL, Witte MH, Unger EC et al (2000) Advances in imaging of lymph flow disorders. Radiographics 20:1697–1719

    CAS  PubMed  Google Scholar 

  2. Picard J-D (1995) Lymphatic circulation. S.I.A., Lavaur, France

  3. Merrigan BA, Winter DC, O’Sullivan GC (1997) Chylothorax. Br J Surg 84:15–20

    Article  CAS  PubMed  Google Scholar 

  4. Moghimi SM, Bonnemain B (1999) Subcutaneous and intravenous delivery of diagnostic agents to the lymphatic system: applications in lymphoscintigraphy and indirect lymphography. Adv Drug Deliv Rev 37:295–312

    Article  CAS  PubMed  Google Scholar 

  5. Weissleder H, Weissleder R (1988) Lymphedema: evaluation of qualitative and quantitative lymphoscintigraphy in 238 patients. Radiology 167:729–735

    CAS  PubMed  Google Scholar 

  6. Witte CL, Witte MH (1999) Diagnostic and interventional imaging of lymphatic disorders. Int Angiol 18:25–30

    CAS  PubMed  Google Scholar 

  7. Weissleder R, Elizondo G, Josephson L et al (1989) Experimental lymph node metastases: enhanced detection with MR lymphography. Radiology 171:835–839

    CAS  PubMed  Google Scholar 

  8. Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L (1990) Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175:489–493

    CAS  PubMed  Google Scholar 

  9. Jung CW (1995) Surface properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging 13:675–691

    Article  CAS  PubMed  Google Scholar 

  10. Jung CW, Jacobs P (1995) Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging 13:661–674

    Article  CAS  PubMed  Google Scholar 

  11. Weissleder R, Elizondo G, Wittenberg J, Lee AS, Josephson L, Brady TJ (1990) Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology 175:494–498

    CAS  PubMed  Google Scholar 

  12. Clement O, Rety F, Cuenod CA et al (1998) MR lymphography: evidence of extravasation of superparamagnetic nanoparticles into the lymph. Acad Radiol 5:S170–S172 (discussion S183–S174)

    PubMed  Google Scholar 

  13. Rety F, Clement O, Siauve N et al (2000) MR lymphography using iron oxide nanoparticles in rats: pharmacokinetics in the lymphatic system after intravenous injection. J Magn Reson Imaging 12:734–739

    CAS  Google Scholar 

  14. Vassallo P, Matei C, Heston WD, McLachlan SJ, Koutcher JA, Castellino RA (1994) AMI-227-enhanced MR lymphography: usefulness for differentiating reactive from tumor-bearing lymph nodes. Radiology 193:501–506

    CAS  PubMed  Google Scholar 

  15. Guimaraes R, Clement O, Bittoun J, Carnot F, Frija G (1994) MR lymphography with superparamagnetic iron nanoparticles in rats: pathologic basis for contrast enhancement. Am J Roentgenol 162:201–207

    CAS  Google Scholar 

  16. Hayashi S, Miyazaki M (1999) Thoracic duct: visualization at nonenhanced MR lymphography—initial experience. Radiology 212:598–600

    CAS  PubMed  Google Scholar 

  17. Harika L, Weissleder R, Poss K, Zimmer C, Papisov MI, Brady TJ (1995) MR lymphography with a lymphotropic T1-type MR contrast agent: Gd-DTPA-PGM. Magn Reson Med 33:88–92

    CAS  PubMed  Google Scholar 

  18. Staatz G, Nolte-Ernsting CC, Adam GB et al (2001) Interstitial T1-weighted MR lymphography: lipophilic perfluorinated gadolinium chelates in pigs. Radiology 220:129–134

    CAS  PubMed  Google Scholar 

  19. Misselwitz B, Schmitt-Willich H, Michaelis M, Oellinger JJ (2002) Interstitial magnetic resonance lymphography using a polymeric t1 contrast agent: initial experience with Gadomer-17. Invest Radiol 37:146–151

    Article  PubMed  Google Scholar 

  20. Ruehm SG, Corot C, Debatin JF (2001) Interstitial MR lymphography with a conventional extracellular gadolinium-based agent: assessment in rabbits. Radiology 218:664–669

    CAS  PubMed  Google Scholar 

  21. Bellin MF, Vasile M, Morel-Precetti S (2003) Currently used non-specific extracellular MR contrast media. Eur Radiol 12:2688–2698

    Google Scholar 

  22. Ruehm SG, Schroeder T, Debatin JF (2001) Interstitial MR lymphography with gadoterate meglumine: initial experience in humans. Radiology 220:816–821

    CAS  PubMed  Google Scholar 

  23. Moskovic E, Fernando I, Blake P, Parsons C (1991) Lymphography—current role in oncology. Br J Radiol 64:422–427

    CAS  PubMed  Google Scholar 

  24. Cserni G (1999) Metastases in axillary sentinel lymph nodes in breast cancer as detected by intensive histopathological work up. J Clin Pathol 52:922–924

    CAS  PubMed  Google Scholar 

  25. Dowlatshahi K, Fan M, Snider HC, HabibFA (1997) Lymph node micrometastases from breast carcinoma: reviewing the dilemma. Cancer 80:1188–1197

    Article  CAS  PubMed  Google Scholar 

  26. Uematsu T, Sano M, Homma K (2001) In vitro high-resolution helical CT of small axillary lymph nodes in patients with breast cancer: correlation of CT and histology. Am J Roentgenol 176:1069–1074

    CAS  Google Scholar 

  27. Mumtaz H, Hall-Craggs MA, Davidson T et al (1997) Staging of symptomatic primary breast cancer with MR imaging. Am J Roentgenol 169:417–424

    CAS  Google Scholar 

  28. Konyer NB, Ramsay EA, Bronskill MJ, Plewes DB (2002) Comparison of MR imaging breast coils. Radiology 222:830–834

    PubMed  Google Scholar 

  29. Luciani A, Dao TH, Lapeyre M et al (2004) Simultaneous bilateral breast and high-resolution axillary MRI of patients with breast cancer: preliminary results. Am J Roentgenol (in press)

  30. Morton DL, Wen DR, Wong JH et al (1992) Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch Surg 127:392–399

    PubMed  Google Scholar 

  31. Krag DN (1999) The sentinel node for staging breast cancer: current review. Breast Cancer 6:233–236

    PubMed  Google Scholar 

  32. Whitworth P, McMasters KM, Tafra L, Edwards MJ (2000) State-of-the-art lymph node staging for breast cancer in the year 2000. Am J Surg 180:262–267

    Article  CAS  PubMed  Google Scholar 

  33. Wisner ER, Katzberg RW, Koblik PD et al (1995) Indirect computed tomography lymphography of subdiaphragmatic lymph nodes using iodinated nanoparticles in normal dogs. Acad Radiol 2:405–412

    CAS  PubMed  Google Scholar 

  34. McIntire GL, Bacon ER, Illig KJ et al (2000) Time course of nodal enhancement with CT X-ray nanoparticle contrast agents: effect of particle size and chemical structure. Invest Radiol 35:91–96

    Article  CAS  PubMed  Google Scholar 

  35. Bellin MF, Roy C, Kinkel K et al (1998) Lymph node metastases: safety and effectiveness of MR imaging with ultrasmall superparamagnetic iron oxide particles—initial clinical experience. Radiology 207:799–808

    CAS  PubMed  Google Scholar 

  36. Sigal R, Vogl T, Casselman J et al (2002) Lymph node metastases from head and neck squamous cell carcinoma: MR imaging with ultrasmall superparamagnetic iron oxide particles (Sinerem MR)—results of a phase-III multicenter clinical trial. Eur Radiol 12:1104–1113

    Article  CAS  PubMed  Google Scholar 

  37. Harisinghani MG, Barentsz J, Hahn PF et al (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348:2491–2499

    Article  PubMed  Google Scholar 

  38. Michel SC, Keller TM, Frohlich JM et al (2002) Preoperative breast cancer staging: MR imaging of the axilla with ultrasmall superparamagnetic iron oxide enhancement. Radiology 225:527–536

    PubMed  Google Scholar 

  39. Harisinghani MG, Saini S, Slater GJ, Schnall MD, Rifkin MD (1997) MR imaging of pelvic lymph nodes in primary pelvic carcinoma with ultrasmall superparamagnetic iron oxide (Combidex): preliminary observations. J Magn Reson Imaging 7:161–163

    CAS  PubMed  Google Scholar 

  40. Williams AD, Cousins C, Soutter WP et al (2001) Detection of pelvic lymph node metastases in gynecologic malignancy: a comparison of CT, MR imaging, and positron emission tomography. Am J Roentgenol 177:343–348

    CAS  Google Scholar 

  41. Hong SP, Hahn JS, Lee JD, Bae SW, Youn MJ (2003) 18F-Fluorodeoxyglucose-positron emission tomography in the staging of malignant lymphoma compared with CT and 67 Ga Scan. Yonsei Med J 44:779–786

    PubMed  Google Scholar 

  42. Friedberg JW, Chengazi V (2003) PET scans in the staging of lymphoma: current status. Oncologist 8:438–447

    PubMed  Google Scholar 

  43. Barranger E, Grahek D, Antoine M, Montravers F, Talbot JN, Uzan S (2003) Evaluation of fluorodeoxyglucose positron emission tomography in the detection of axillary lymph node metastases in patients with early-stage breast cancer. Ann Surg Oncol 10:622–627

    Article  PubMed  Google Scholar 

  44. Eubank WB, Mankoff DA, Takasugi J et al (2001) 18fluorodeoxyglucose positron emission tomography to detect mediastinal or internal mammary metastases in breast cancer. J Clin Oncol 19:3516–3523

    CAS  PubMed  Google Scholar 

  45. Lin WC, Hung YC, Yeh LS, Kao CH, Yen RF, Shen YY (2003) Usefulness of (18)F-fluorodeoxyglucose positron emission tomography to detect para-aortic lymph nodal metastasis in advanced cervical cancer with negative computed tomography findings. Gynecol Oncol 89:73–76

    Article  PubMed  Google Scholar 

  46. Antoch G, Stattaus J, Nemat AT et al (2003) Non-small cell lung cancer: dual-modality PET/CT in preoperative staging. Radiology 229:526–533

    PubMed  Google Scholar 

  47. Picchio M, Messa C, Landoni C et al (2003) Value of [11C]choline-positron emission tomography for re-staging prostate cancer: a comparison with [18F]fluorodeoxyglucose-positron emission tomography. J Urol 169:1337–1340

    PubMed  Google Scholar 

  48. Vassallo P, Wernecke K, Roos N, Peters PE (1992) Differentiation of benign from malignant superficial lymphadenopathy: the role of high-resolution US. Radiology 183:215–220

    CAS  PubMed  Google Scholar 

  49. Tregnaghi A, De Candia A, Calderone M et al (1997) Ultrasonographic evaluation of superficial lymph node metastases in melanoma. Eur J Radiol 24:216–221

    Article  CAS  PubMed  Google Scholar 

  50. Steinkamp HJ, Wissgott C, Rademaker J, Felix R (2002) Current status of power Doppler and color Doppler sonography in the differential diagnosis of lymph node lesions. Eur Radiol 12:1785–1793

    Article  CAS  PubMed  Google Scholar 

  51. Moritz JD, Ludwig A, Oestmann JW (2000) Contrast-enhanced color Doppler sonography for evaluation of enlarged cervical lymph nodes in head and neck tumors. Am J Roentgenol 174:1279–1284

    CAS  Google Scholar 

  52. Yang WT, Metreweli C, Lam PK, Chang J (2001) Benign and malignant breast masses and axillary nodes: evaluation with echo-enhanced color power Doppler US. Radiology 220:795–802

    CAS  PubMed  Google Scholar 

  53. Schmid-Wendtner MH, Partscht K, Korting HC, Volkenandt M (2002) Improved differentiation of benign and malignant lymphadenopathy in patients with cutaneous melanoma by contrast-enhanced color Doppler sonography. Arch Dermatol 138:491–497

    Article  PubMed  Google Scholar 

  54. Wisner ER, Ferrara KW, Short RE, Ottoboni TB, Gabe JD, Patel D (2003) Sentinel node detection using contrast-enhanced power Doppler ultrasound lymphography. Invest Radiol 38:358–365

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Clément.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clément, O., Luciani, A. Imaging the lymphatic system: possibilities and clinical applications. Eur Radiol 14, 1498–1507 (2004). https://doi.org/10.1007/s00330-004-2265-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-004-2265-9

Keywords

Navigation