Skip to main content
Log in

Differentially expressed genes induced by cold and UV-B in Deschampsia antarctica Desv.

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Antarctica is one of the most extreme environments on Earth. Deschampsia antarctica Desv. is the only monocot vascular plant that colonizes the Antarctic Peninsula. The survival of this species in this harsh environment suggests that this plant possesses genes associated with cold and UV tolerance. Using suppression subtractive hybridization, we identified a total of 112 differentially expressed genes under cold and UV irradiance conditions. Northern blot analysis and real-time RT-PCR confirmed expression differences among several genes. Using similarity search analysis, we identified a number of genes that have not been previously reported. The results showed that cold and UV radiation mainly induce the expression of genes related to transcription, energy and defense response. Interestingly, part of the isolated genes corresponds to unknown or hypothetical proteins. This set of tolerance-related genes could be relevant to uncover the mechanisms by which this extremophile survives in its environment and contribute to the development of biotechnology in Antarctic species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

EST:

Expressed sequence tags

SSH:

Suppression subtractive hybridization

PFD:

Photon flux density

References

  • Ahuja I, de Vos RC, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15:664–674

    Article  PubMed  CAS  Google Scholar 

  • Alberdi M, Bravo LA, Gutiérrez A, Gidekel M, Corcuera LJ (2002) Ecophysiology of Antarctic vascular plants. Physiol Plantarum 115:479–486

    Article  CAS  Google Scholar 

  • Allen DJ, Ort DR (2001) Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci 6:36–42

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Amudha J, Balasubramani G (2011) Recent molecular advances to combat abiotic stress tolerance in crop plants. BMBR 6:31–58

    CAS  Google Scholar 

  • Ban Y, Honda C, Bessho H, Pang XM, Moriguchi T (2007) Suppression subtractive hybridization identifies genes induced in response to UV-B irradiation in apple skin: isolation of a putative UDP-glucose 4-epimerase. J Exp Bot 58:1825–1834

    Article  PubMed  CAS  Google Scholar 

  • Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W, Drost L, Ridley P, Hudson SA, Patel K, Murphy G, Piffanelli P, Wedler H, Wedler E, Wambutt R, Weitzenegger T, Pohl TM, Terryn N, Gielen J, Villarroel R, De Clerck R, Van Montagu M, Lecharny A, Auborg S, Gy I, Kreis M, Lao N, Kavanagh T, Hempel S, Kotter P, Entian KD, Rieger M, Schaeffer M, Funk B, Mueller-Auer S, Silvey M, James R, Montfort A, Pons A, Puigdomenech P, Douka A, Voukelatou E, Milioni D, Hatzopoulos P, Piravandi E, Obermaier B, Hilbert H, Dusterhoft A, Moores T, Jones JD, Eneva T, Palme K, Benes V, Rechman S, Ansorge W, Cooke R, Berger C, Delseny M, Voet M, Volckaert G, Mewes HW, Klosterman S, Schueller C, Chalwatzis N (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391:485–488

    Article  PubMed  CAS  Google Scholar 

  • Bieza K, Lois R (2001) An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics. Plant Physiol 126:1105–1115

    Article  PubMed  CAS  Google Scholar 

  • Bravo LA, Griffith M (2005) Characterization of antifreeze activity in Antarctic plants. Phyton Int J Exp Bot 56:1189–1196

    Article  CAS  Google Scholar 

  • Bravo LA, Ulloa N, Zúñiga GE, Casanova A, Corcuera LJ, Alberdi M (2001) Cold resistance in Antarctic angiosperms. Physiol Plantarum 111:55–65

    Article  CAS  Google Scholar 

  • Britt AB (1996) DNA damage and repair in plants. Annu Rev Plant Physiol Plant Mol Biol 47:75–100

    Article  PubMed  CAS  Google Scholar 

  • Britt AB (1999) Molecular genetics of DNA repair in higher plants. Trends Plant Sci 4:20–25

    Article  PubMed  Google Scholar 

  • Casati P, Walbot V (2003) Gene expression profiling in response to ultraviolet radiation in maize genotypes with varying flavonoid content. Plant Physiol 132:1739–1754

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Zhong H, Ren F, Guo Q-Q, Hu X-P, Li X-B (2011) A novel cold-regulated gene, COR25, of Brassica napus is involved in plant response and tolerance to cold stress. Plant Cell Rep 30:463–471

    Article  PubMed  Google Scholar 

  • Chen H, Lu Y, Jiang JG (2012) Comparative analysis on the key enzymes of the glycerol cycle metabolic pathway in Dunaliella salina under osmotic stresses. PLoS ONE 7:e37578

    Article  PubMed  CAS  Google Scholar 

  • Cheregi O, Sicora C, Kos P, Nixon P, Vass I (2005) The FtsH protease is required for the repair of Photosystem II in the cyanobacterium Synechocystis 6803 damaged UV-B radiation. BMC Plant Biol 5:S8

    Article  Google Scholar 

  • De Palma M, Grillo S, Massarelli I, Costa A, Balogh G, Vigh L, Leone A (2008) Regulation of desaturase gene expression, changes in membrane lipid composition and freezing tolerance in potato plants. Mol Breed 21:15–26

    Article  Google Scholar 

  • Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030

    Article  PubMed  CAS  Google Scholar 

  • Edwards JA, Lewis Smith RI (1988) Photosynthesis and respiration of Colobanthus quitensis and Deschampsia antarctica from the Maritime Antarctic. Br Antarct Surv B 81:43–63

    Google Scholar 

  • Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol 133:1420–1428

    Article  PubMed  CAS  Google Scholar 

  • Gidekel M, Destefano-Beltrán L, García P, Mujica L, Leal P, Cuba M, Fuentes L, Bravo LA, Corcuera LJ, Alberdi M, Concha I, Gutiérrez A (2003) Identification and characterization of three novel cold acclimation-responsive genes from the extremophile hair grass Deschampsia antarctica Desv. Extremophiles 7:459–469

    Article  PubMed  CAS  Google Scholar 

  • Gielwanowska I, Szczuka E (2005) New ultrastructural features of organelles in leaf cells of Deschampsia antarctica Desv. Polar Biol 28:951–955

    Article  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865

    Article  PubMed  CAS  Google Scholar 

  • Guy CL, Niemi KJ, Brambl R (1985) Altered gene expression during cold acclimation of spinach. Proc Natl Acad Sci USA 82:3673–3677

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M, Komatsu S (2007) Proteomic analysis of rice seedlings during cold stress. Proteomics 7:1293–1302

    Article  PubMed  CAS  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Huiskes D, Lud T, Moerdijkpoortvliet TCW, Rozema J (1999) Impact of UV-B radiation on antarctic terrestrial vegetation. In: Rozema J (ed) Stratospheric ozone depletion the effects of enhanced UV-B radiation on terrestrial ecosystems. Backhuys Publishers, Leiden, pp 313–337

    Google Scholar 

  • Huner NPA, Öquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3:224–230

    Article  Google Scholar 

  • Kucera B, Leubner-Metzger G, Wellmann E (2003) Distinct ultraviolet-signaling pathways in bean leaves. DNA damage is associated with beta-1,3-glucanase gene induction, but not with flavonoid formation. Plant Physiol 133:1445–1452

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Yadav S (2009) Proline and betaine provide protection to antioxidant and methylglyoxal detoxification systems during cold stress in <i>Camellia sinensis (L.) O. Kuntze. Acta Physiol Plant 31:261–269

    Article  CAS  Google Scholar 

  • Lee F, Moss J, Lin L (1992) A simplified hybridization protocol for RNA blot. Biotechniques 12:844–845

    Google Scholar 

  • Lee H, Cho HH, Kim IC, Yim JH, Lee HK, Lee YK (2008) Expressed sequence tag analysis of Antarctic hairgrass Deschampsia antarctica from King George Island, Antarctica. Mol Cells 25:258–264

    PubMed  CAS  Google Scholar 

  • Lindahl M, Spetea C, Hundal T, Oppenheim AB, Adam Z, Andersson B (2000) The thylakoid FtsH protease plays a role in the light-induced turnover of the photosystem II D1 protein. Plant cell 12:419–431

    PubMed  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  PubMed  CAS  Google Scholar 

  • Medina J, Catala R, Salinas J (2011) The CBFs: three Arabidopsis transcription factors to cold acclimate. Plant Sci 180:3–11

    Article  PubMed  CAS  Google Scholar 

  • Nishizawa-Yokoi A, Nosaka R, Hayashi H, Tainaka H, Maruta T, Tamoi M, Ikeda M, Ohme-Takagi M, Yoshimura K, Yabuta Y, Shigeoka S (2011) HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress. Plant Cell Physiol 52:933–945

    Article  PubMed  CAS  Google Scholar 

  • Pál M, Janda T, Szalai G (2011) Abscisic acid may alter the salicylic acid-related abiotic stress response in maize. J Agron Crop Sci 197:368–377

    Article  Google Scholar 

  • Paul ND, Gwynn-Jones D (2003) Ecological roles of solar UV radiation: towards an integrated approach. Trends Ecol Evol 18:48–55

    Article  Google Scholar 

  • Pereira BK, Rosa RM, da Silva J, Guecheva TN, Oliveira IM, Ianistcki M, Benvegnu VC, Furtado GV, Ferraz A, Richter MF, Schroder N, Pereira AB, Henriques JA (2009) Protective effects of three extracts from Antarctic plants against ultraviolet radiation in several biological models. J Photochem Photobiol, B 96:117–129

    Article  CAS  Google Scholar 

  • Pérez-Torres E, García A, Dinamarca J, Bravo L, Corcuera L (2004) The role of photochemical quenching and antioxidants in photoprotection of Deschampsia antarctica. Funct Plant Biol 31:731–741

    Article  Google Scholar 

  • Robinson SA, Wasley J, Tobin AK (2003) Living on the edge—plants and global change in continental and maritime Antarctica. Glob Change Biol 9:1681–1717

    Article  Google Scholar 

  • Ruhland CT, Xiong FS, Clark WD, Day TA (2005) The influence of ultraviolet-B radiation on growth, hydroxycinnamic acids and flavonoids of Deschampsia antarctica during springtime ozone depletion in Antarctica. Photochem Photobiol 81:1086–1093

    Article  PubMed  CAS  Google Scholar 

  • Russell DA, Sachs MM (1989) Differential expression and sequence analysis of the maize glyceraldehyde-3-phosphate dehydrogenase gene family. Plant cell 1:793–803

    PubMed  CAS  Google Scholar 

  • Rybus-Zając M, Kubiś J (2010) Effect of UV-B on antioxidative enzyme activity in cucumber. Acta Biol Crac Ser Bot 52:97–102

    Google Scholar 

  • Sanchez-Ballesta MT, Lluch Y, Gosalbes MJ, Zacarias L, Granell A, Lafuente MT (2003) A survey of genes differentially expressed during long-term heat-induced chilling tolerance in citrus fruit. Planta 218:65–70

    Article  PubMed  CAS  Google Scholar 

  • Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38:995–1014

    Article  PubMed  CAS  Google Scholar 

  • Sung DY, Kaplan F, Lee KJ, Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8:179–187

    Article  PubMed  CAS  Google Scholar 

  • Taj G, Agarwal P, Grant M, Kumar A (2010) MAPK machinery in plants: recognition and response to different stresses through multiple signal transduction pathways. Plant Signal Behav 5:1370–1378

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  PubMed  CAS  Google Scholar 

  • Vaahtera L, Brosche M (2011) More than the sum of its parts–how to achieve a specific transcriptional response to abiotic stress. Plant Sci 180:421–430

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  PubMed  CAS  Google Scholar 

  • Xiong FS, Ruhland CT, Day TA (1999) Photosynthetic temperature response of the Antarctic vascular plants Colobanthus quitensis and Deschampsia antarctica. Physiol Plantarum 106:276–286

    Article  CAS  Google Scholar 

  • Xu XY, Fan R, Zheng R, Li CM, Yu DY (2011) Proteomic analysis of seed germination under salt stress in soybeans. J Zhejiang Univ Sci B 12:507–517

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Kwon HB, Peng HP, Shih MC (1993) Stress responses and metabolic regulation of glyceraldehyde-3-phosphate dehydrogenase genes in Arabidopsis. Plant Physiol 101:209–216

    Article  PubMed  CAS  Google Scholar 

  • Yu S, Zhang X, Guan Q, Takano T, Liu S (2007) Expression of a carbonic anhydrase gene is induced by environmental stresses in rice (Oryza sativa L.). Biotechnol Lett 29:89–94

    Article  PubMed  Google Scholar 

  • Zúñiga-Feest A, Ort DR, Gutiérrez A, Gidekel M, Bravo LA, Corcuera LJ (2005) Light regulation of sucrose-phosphate synthase activity in the freezing-tolerant grass Deschampsia antarctica. Photosynth Res 83:75–86

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Leon Bravo for his helpful discussions and critical reading of the manuscript. The authors thank Charles Guy for his help in the translation and proofreading of the manuscript. This work was supported by Fondo de Fomento al Desarrollo Científico y Tecnológico (FONDEF project D03I-1079), the Antarctic Chilean Institute (INACH project 01-03-Part II), INNOVA BIOBIO project 04-B1-283 L1, Consorcio de Tecnología e Innovación para la Salud (PBCT CTE-06). JD was also supported by the Programa Bicentenario-Banco Mundial, CONICYT, Chile PBCT CTE-06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Gutiérrez-Moraga.

Additional information

Jorge Dinamarca and Alejandra Sandoval-Alvarez contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dinamarca, J., Sandoval-Alvarez, A., Gidekel, M. et al. Differentially expressed genes induced by cold and UV-B in Deschampsia antarctica Desv.. Polar Biol 36, 409–418 (2013). https://doi.org/10.1007/s00300-012-1271-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-012-1271-7

Keywords

Navigation