Skip to main content
Log in

Spatial variation of phytoplankton assemblages and biomass in the New Zealand sector of the Southern Ocean during the late austral summer 2008

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Up until now, only the floristic composition of large phytoplankton species has been studied in the Southern Ocean immediately south of New Zealand. To fill the gaps in our knowledge of the Antarctic phytoplankton flora and biomass, in relation to physical and chemical environments, New Zealand’s IPY project sampled water between New Zealand and Antarctica and into the Ross Sea in late summer. Near surface phytoplankton samples, collected between New Zealand and Antarctica, and vertical stations, between Scott Island and the Ross Sea ice shelf, allowed us to contrast the flora and biomass in the Ross Sea/Antarctic and Subantarctic waters. Spatially, diatoms were found to be more diverse in both shelf and offshore Antarctic than in Subantarctic waters. Over the Ross Sea shelf, the pennate diatom, Fragilariopsis kerguelensis, and a colonial prymnesiophyte, Phaeocystis antarctica, dominated both numerically and in biomass, contributing to greatest levels of chlorophyll a and cell carbon biomass over the shelf. In both shelf and Antarctic waters, heterotrophic taxa accounted for a greater proportion of total dinoflagellate cell carbon (avg. 95.4 and 91.9 %, respectively) than autotrophic, while in the Subantarctic waters, the reverse was true (avg. 48.6 %). A small number of potentially harmful dinoflagellates, Karenia and Karlodinium spp., were found for the first time in the New Zealand sector of the Southern Ocean. This study represents the first thorough description of the spatial variation of the floristic composition and biomass of phytoplankton in relation to physical and chemical properties, from New Zealand to Antarctica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Armand LK, Crosta X, Romero O, Pichon J–J (2005) The biogeography of major diatom taxa in Southern Ocean sediments: 1. Sea ice related species. Palaeogeo Palaeoclimatol Palaeoecol 223:93–126

    Article  Google Scholar 

  • Arrigo KR, McClain CR (1994) Spring phytoplankton production in the western Ross Sea. Science 266:261–263

    Article  PubMed  CAS  Google Scholar 

  • Arrigo KR, Van Dijken GL (2007) Interannual variation in air-sea CO2 flux in the Ross Sea, Antarctica: a model analysis. J Geophys Res C 112:1–16

    Article  Google Scholar 

  • Arrigo KR, Weiss AM, Smith WO (1998) Physical forcing of phytoplankton dynamics in the Southwestern Ross Sea. J Geophys Res C 103:1007–1021

    Article  CAS  Google Scholar 

  • Arrigo KR, Robinson DH, Worthen DL, Dunbar RB, DiTullio GR, VanWoert M, Lizotte MP (1999) Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science 283:365–367

    Article  PubMed  CAS  Google Scholar 

  • Asper VA, Smith WO (2003) The distribution of particulate organic carbon and its dynamics in the southern Ross Sea. In: DiTullio GR, Dunbar RB (eds) Biogeochemistry of the Ross Sea. American Geophysical Union. Washington, pp 235–242

  • Barber RT, Smith RL (1981) Coastal upwelling ecosystems. In: Longhurst AR (ed) Analysis of marine ecosystems. Academic, London, pp 31–68

    Google Scholar 

  • Boyd PW, Watson AJ, Law CS, Abraham ER, Trull T, Murdoch R, Bakker DCE, Bowie AR, Buesseler KO, Chang H, Charette M, Croot P, Downing K, Frew R, Gall M, Hadfield M, Hall J, Harvey M, Jameson G, LaRoche J, Liddicoat M, Ling R, Maldonado MT, McKay RM, Nodder S, Pickmere S, Pridmore R, Rintoul S, Safi K, Sutton P, Strzepek R, Tanneberger K, Turner S, Waite A, Zeldis J (2000) A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407:695–702

    Article  PubMed  CAS  Google Scholar 

  • Burckle LH, Jacobs SS, McLaughlin RB (1987) Late austral spring diatom distribution between New Zealand and the Ross Ice Shelf, Antarctica: Hydrographic and sediment correlations. Micropaleontology 33:74–81

    Article  Google Scholar 

  • Burkholder PR, Sieburth JM (1961) Phytoplankton and chlorophyll in the Gerlache and Bransfield Straits of Antarctica. Limnol Oceanogr 6:45–52

    Article  CAS  Google Scholar 

  • Cassie V (1963) Distribution of surface phytoplankton between New Zealand and Antarctica Scientific reports/Trans-Antarctic Expedition 1955–1958; no. 7. Trans-Antarctic Expedition Committee, London, pp 1–11

  • Chang FH (2011) Toxic effects of three closely-related dinoflagellates, Karenia concordia, K. brevisulcata and K. mikimotoi (Gymnodiniales, Dinophyceae) on other microalgal species. Harmful Algae 10:181–187

    Article  CAS  Google Scholar 

  • Chang FH, Gall M (1998) Phytoplankton assemblages and photosynthetic pigments during winter and spring in the Subtropical Convergence region near New Zealand. NZ J Mar Freshw Res 32:515–530

    Article  CAS  Google Scholar 

  • Chang FH, Vincent WF, Woods PH (1992) Nitrogen utilisation by size-fractionated phytoplankton assemblages associated with an upwelling event off Westland, New Zealand. NZ J Mar Freshw Res 26:287–301

    Article  CAS  Google Scholar 

  • Chang FH, Chiswell SM, Uddstrom MJ (2001) Occurrence and distribution of Karenia brevisulcata (Dinophyceae) during the 1998 summer toxic outbreaks on the central east coast of New Zealand. Phycologia 40:215–222

    Article  Google Scholar 

  • Chang FH, Zeldis J, Gall M, Hall J (2003) Seasonal and spatial variation of phytoplankton assemblages, biomass and cell size from spring to summer across the north-eastern New Zealand continental shelf. J Plankton Res 25:737–758

    Article  CAS  Google Scholar 

  • Chang FH, Uddstrom MJ, Pinkerton MH, Richardson KA (2008) Characterising the 2002 toxic Karenia concordia (Dinophyceae) outbreak and its development using satellite imagery on the north-eastern coast of New Zealand. Harmful Algae 7:532–544

    Article  Google Scholar 

  • Collier R, Dymond J, Honjo S, Manganini S, Francois R, Dunbar R (2000) The vertical flux of biogenic and lithogenic material in the Ross Sea: moored sediment trap observations 1996–1998. Deep Sea Res II 47:3491–3520

    Article  CAS  Google Scholar 

  • Comiso JC, McClain CR, Sullivan CW, Ryan JP, Leonard CL (1993) Coastal zone color scanner pigment concentrations in the Southern Ocean and relationships to geophysical surface features. J Geophys Res C 98:2419–2451

    Article  Google Scholar 

  • Cornet-Barthaux V, Armand L, Quéguiner B (2007) Biovolume and biomass estimates of key diatoms in the southern ocean. Aquat Microb Ecol 48:295–308

    Article  Google Scholar 

  • Crosta X, Romero O, Armand LK, Pichon J–J (2005) The biogeography of major diatom taxa in Southern Ocea sediments: 2. Open ocean related species. Palaeogeo Palaeoclimatol Palaeoecol 223:66–92

    Article  Google Scholar 

  • De Salas MF, Laza-Martínez A, Hallegraeff GM (2008) Novel unarmored dinoflagellates from the toxigenic family Kareniaceae (Gymnodiniales): five new species of Karlodinium and one new Takayama from the Australian sector of the Southern Ocean. J Phycol 44:241–257

    Article  Google Scholar 

  • Deeds JR, Terlizzi DE, Adolf JE, Stoeker DK, Place AR (2002) Toxic activity from cultures of Karlodinium micrum (=Gyrodinium galatheanum) (Dinophyceae)—a dinoflagellate associated with fish mortalities in an estuarine aquaculture facility. Harmful Algae 1:169–189

    Article  CAS  Google Scholar 

  • Dennett MR, Mathot S, Caron DA, Smith WO, Lonsdale DJ (2001) Abundance and distribution of phototrophic and heterotrophic nano- and microplankton in the southern Ross Sea. Deep Sea Res Part II 48:4019–4037

    Article  CAS  Google Scholar 

  • Dugdale RC, Wilkerson FP (1991) Low specific nitrate uptake rate: A common feature of high-nutrient, low-chlorophyll marine ecosystems. Limnol Oceanogr 36:1678–1688

    Article  CAS  Google Scholar 

  • El-Sayed SZ (1998) Antarctic marine ecosystems research; where to from here? Mem Natl Inst Polar Res Spec Issue 52:172–185

    CAS  Google Scholar 

  • Eppley RW, Rogers JN, McCarthyl JJ (1969) Half-saturation constatns for uptake of nitrate and ammonium by marine phytoplankton. Limnol Oceanogr 14:912–920

    Article  CAS  Google Scholar 

  • Eppley RW, Reid FMH, Strickland JDH (1970) The ecology of the plankton off La Jolla, California, in the period April through September, 1967. III. Estimates of phytoplankton crop size, growth rate, and primary production. Bull Scripps Inst Oceanogr (Non-Tech Ser) 17:33–42

    Google Scholar 

  • Fitzwater SE, Johnson KS, Gordon RM, Coale KH, Smith WO (2000) Trace metal concentrations in the Ross Sea and their relationship with nutrients and phytoplankton growth. Deep Sea Res Part II 47:3159–3179

    Article  CAS  Google Scholar 

  • Frenguelli J (1960) Diatomeas y silicoflagelados recogidos en Tierra del Ade ′lie durante las Expediciones Polares Francesas de Paul-Emilie Victor (1950–1952). Rev Algol N S 5:3–48

    Google Scholar 

  • Gardner WD, Chung SP, Richardson MJ, Walsh ID (1995) The oceanic mixed-layer pump. Deep Sea Res Part II 42:757–775

    Article  Google Scholar 

  • Goffart A, Catalano G, Hecq JH (2000) Factors controlling the distribution of diatoms and Phaeocystis in the Ross Sea. J Mar Syst 27:161–175

    Article  Google Scholar 

  • Hallegraeff GM (2005) Silicoflagellates. In: Scott FJ, Marchant HJ (eds) Antarctic marine protists. Australian biological resource study, Canberra, pp 251–254

    Google Scholar 

  • Hallegraeff GM, Bolch CJS, Hill DRA, Jameson I, LeRoi J-M, McMinn A, Murray S, De Salas MF, Saunders K (2010) Algae of Australia phytoplankton of temperate coastal waters. ABRS Canberra and CSIRO Publishing, Melbourne, pp 1–421

    Google Scholar 

  • Hasle GR (1956) Phytoplankton and hydrography of the Pacific part of the Antarctic Ocean. Nature 177:616–617

    Article  Google Scholar 

  • Hasle GR (1969) An analysis of the phytoplankton of the Pacific Southern Ocean: abundance, composition and distribution during the Brategg Expedition, 1947–1948. Hvalråd Skr 52:616–617

    Google Scholar 

  • Hasle GR, Syvertsen EE (1997) Marine diatoms. In: Tomas CR (ed) Identifying marine phytoplankton. Academic, San Diego, pp 5–386

    Chapter  Google Scholar 

  • Haywood AJ, Steidinger KA, Truby EW, Bergquist PR, Bergquist PL, Adamson J, MacKenzie L (2004) Comparative morphology and molecular phylogenetic analysis of three new species of the genus Karenia (Dinophyceae) from New Zealand. J Phycol 40:165–179

    Article  Google Scholar 

  • Hendey NI (1937) The plankton diatoms of southern seas. Discovery Reports, vol 16, pp 151–364

  • Heywood RB, Whitaker TM (1984) The marine flora. In: Laws RM (ed) Antarctic ecology 2. Academic Press, London, pp 373–419

    Google Scholar 

  • Hustedt F (1958) Diatomeen aus der Antarktis und dem Südatlaktik. Reprinted from “Deutsche Antarktische Expedition 19838/1939” Band II. Geographische-Kartographische Anstalt “Mundus”. Hamburg, p 191

  • Kempton JW, Lewitus AJ, Deeds JR, McHugh Law J, Place AR (2002) Toxicity of Karlodinium micrum (Dinophyceae) associated with a fish kill in a South Carolina brackish retention pond. Harmful Algae 1:233–241

    Article  CAS  Google Scholar 

  • Kopczyńska EE, Weber LH, El-Sayed SZ (1986) Phytoplankton species composition and abundance in the Indian sector of the Antarctic Ocean. Polar Biol 6:161–169

    Article  Google Scholar 

  • Kopczyńska EE, Fiala M, Jeandel C (1998) Annual and interannual variability in phytoplankton at a permanent station off Kerguelen Island, Southern Ocean. Polar Bio 20:342–351

    Article  Google Scholar 

  • Leventer A, Dunbar RB (1996) Factors influencing the distribution of diatoms and other algae in the Ross Sea. Geophys Res 101:18489–18500

    Article  CAS  Google Scholar 

  • Longhurst AR (1998) Ecological geography of the sea. Academic Press, San Diego

    Google Scholar 

  • Marchant HJ (2005) Prasinophytes. In: Scott FJ, Marchant HJ (eds) Antarctic marine protists. Australian Biological Resource Study, Canberra, pp 308–315

    Google Scholar 

  • Marchant HJ, Scott FJ, Davidson AT (2005) Haptophytes: Order Prymnesiales. In: Scott FJ, Marchant HJ (eds) Antarctic marine protists. Australian Biological Resource Study, Canberra, pp 255–275

    Google Scholar 

  • Martin JH, Fitzwater SE, Gordon RM (1990) Iron deficiency limits phytoplankton growth in Antarctic waters. Global Biogeochem Cycles 4:5–12

    Article  CAS  Google Scholar 

  • McMinn A, Scott FJ (2005) Dinoflagellates. In: Scott FJ, Marchant HJ (eds) Antarctic marine protists. Australian Biological Resource Study, Canberra, pp 202–250

    Google Scholar 

  • Mitchell BG, Holm-Hansen O (1991) Observations and modeling of the Antarctic phytoplankton crop in relation to mixing depth. Deep Sea Res Part I 38:981–1007

    Article  CAS  Google Scholar 

  • Moisan TA, Mitchell BG (1999) Photophysiological acclimation of Phaeocystis antarctica Karsten under light limitation. Limnol Oceanogr 44:247–258

    Article  Google Scholar 

  • Nelson DM, Smith WO (1986) Phytoplankton bloom dynamics of the western Ross Sea ice edge. 2. Mesoscale cycling of nitrogen and silicon. Deep Sea Res Part I 33:1389–1412

    Article  CAS  Google Scholar 

  • Nöthig EM, Bodungen BV, Sui Q (1991) Phyto- and protozooplankton biomas during austral summer in surface waters of the Weddel Sea and vicinity. Polar Biol 11:293–304

    Article  Google Scholar 

  • Nuccio C, Innamorati M, Lazzara L, Mori G, Massi L (2000) Spatial and temporal distribution of phytoplankton coenoses in the Ross Sea. In: Faranda FG, Ianora A (eds) Ross Sea Ecology. Italiantartide Expeditions (1987–1995). Springer, Berlin, pp 231–245

    Chapter  Google Scholar 

  • Olson RJ, Sosik HM, Chekalyuk AM, Shalapyonok A (2000) Effects of iron enrichment on phytoplankton in the Southern Ocean during late summer: active fluorescence and flow cytometric analyses. Deep Sea Res Part II 47:3181–3200

    Article  CAS  Google Scholar 

  • Orsi AH, Wiederwohl CL (2009) A recount of Ross sea waters. Deep Sea Res Part II 56:778–795

    Article  Google Scholar 

  • Peloquin JA, Smith WO (2007) Phytoplankton blooms in the Ross Sea, Antarctica: Interannual variability in magnitude, temporal patterns, and composition. J Geophys Res C 112:C08013. doi:10.1029/2006JC003816

    Article  Google Scholar 

  • Peters F, Arin L, Marrase C, Berdalet E, Sala MM (2006) Effects of small-scale turbulence on the growth of two diatoms of different size in a phosphorus-limited medium. J Mar Syst 61:134–148

    Article  CAS  Google Scholar 

  • Pickmere SE (1998) Biological effects of cross-shelf water transfer programme: nutrient report. Voyages KAH9614, KAH9617, TAN9612, TAN9702, 1996–1997. NIWA internal data archive 1998/04. NIWA, Hamilton

  • Rott E (1981) Some results from phytoplankton counting intercalibrations. Schweiz Z Hydrol 43:34–62

    Google Scholar 

  • Round FE, Crawford RM, Mann DG (1990) The diatoms biology and morphology of the genera. Cambridge University Press, Cambridge, pp 1–747

    Google Scholar 

  • Sakshaug E, Slagstad D, Holm-Hansen O (1991) Factors controlling the development of phytoplankton blooms in the Antarctic ocean—a mathematical-model. Mar Chem 35:259–271

    Article  CAS  Google Scholar 

  • Scott FJ (2005) Euglenoids. In: Scott FJ, Marchant HJ (eds) Antarctic marine protists. Australian Biological Resource Study, Canberra, pp 319–323

    Google Scholar 

  • Scott FJ, Thomas DP (2005) Diatoms. In: Scott FJ, Marchant HJ (eds) Antarctic marine protists. Australian Biological Resource Study, Canberra, pp 13–201

    Google Scholar 

  • Scott FJ, van den Hoff J (2005) Cryptophytes. In: Scott FJ, Marchant HJ (eds) Antarctic marine protists. Australian Biological Resource Study, Canberra, pp 317–318

    Google Scholar 

  • Sedgwick PN, DiTullio GR, Mackey DJ (2000) Iron and manganese in the Ross Sea, Antarctica: seasonal iron limitation in Antarctic shelf waters. J Geophys Res C 105:11321–11336

    Article  Google Scholar 

  • Sedwick PN, DiTullio GR (1997) Regulation of algal blooms in Antarctic shelf waters by the release of iron from melting sea ice. Geophys Res Lett 24:2515–2518

    Article  CAS  Google Scholar 

  • Smith WO, Asper VL (2001) The influence of phytoplankton assemblage composition on biogeochemical characteristics and cycles in the southern Ross Sea, Antarctica. Deep Sea Res Part I 48:137–161

    Article  CAS  Google Scholar 

  • Smith WO, Comiso JC (2008) Influence of sea ice on primary production in the Southern Ocean: a satellite perspective. J Geophys Res C 113:C05S93 doi:10.1029/2007jc004251

  • Smith WO, Nelson DM (1985) Phytoplankton bloom produced by a receding ice edge in the Ross Sea: spatial coherence with the density field. Science 227:163–166

    Article  PubMed  CAS  Google Scholar 

  • Smith WO, Nelson DM, DiTullio GR, Laventer AR (1996) Temporal and spatial patterns in the Ross Sea: phytoplankton biomass, elemental composition, productivity and growth rates. J Geophys Res 101:18455–18466

    Article  CAS  Google Scholar 

  • Smith WO, Marra J, Hiscock MR, Barber RT (2000) The seasonal cycle of phytoplankton biomass and primary productivity in the Ross Sea, Antarctica. Deep Sea Res Part II 47:3119–3140

    Article  CAS  Google Scholar 

  • Smith WO, Dinniman MS, Tozzi S, DiTullio GR, Mangoni O, Modigh M, Saggiomo V (2010) Phytoplankton photosynthetic pigments in the Ross Sea: Patterns and relationships among functional groups. J Mar Syst 82:177–185

    Article  Google Scholar 

  • Steidinger KA, Tangen K (1997) Dinoflagellates. In: Tomas CR (ed) Identifying marine phytoplankton. Academic, San Diego, pp 387–584

    Chapter  Google Scholar 

  • Strickland JDH, Parsons TR, Fisheries Research Board of Canada (1972) A practical handbook of seawater analysis. Bulletin/Fisheries Research Board of Canada, 167, 2nd edn. Fisheries Research Board of Canada, Ottawa

  • Sukhanova IN, Zhittina LS, Mikaelyan AS, Sergeera OM (1996) Phytoplankton: its composition and distribution. In: Vinogradov MEe, Flint MV (eds) Pacific Subantarctic ecosystems (English translation). Nauka, Moscow, pp 71–84

  • Tagliabue A, Arrigo KR (2006) Processes governing the supply of iron to phytoplankton in stratified seas. J Geophys Res C 111:C06019. doi:10.1029/2005jc003363

    Article  Google Scholar 

  • Taylor FJR (1976) Dinoflagellates from the International Indian Ocean Expedition a report on material collected by the R.V. “Anton Bruun” 1963–1964. Bibliotheca Botanica, Alle Rechte, auch das der Ubersetzung, vorbehalten, Germany, pp 1–234

  • Throndsen J (1997) The planktonic marine flagellates. In: Tomas CR (ed) Identifying marine phytoplankton. Academic, San Diego, pp 591–730

    Chapter  Google Scholar 

  • Umani SF, Monti M, Nuccio C (1998) Microzooplankton biomass distribution in Terra Nova Bay, Ross Sea (Antarctica). J Mar Syst 17:289–303

    Article  Google Scholar 

  • Umani SF, Monti M, Bergamasco A, Cabrini M, De Vittor C, Burba N, Del Negro P (2005) Plankton community structure and dynamics versus physical structure from Terra Nova Bay to Ross Ice Shelf (Antarctica). J Mar Syst 55:31–46

    Article  Google Scholar 

  • Wang X, Matear RJ, Trull TW (2003) Nutrient utilization ratios in the polar frontal zone in the Australian sector of the Southern Ocean: a model. Global Biogeochem Cycles 17:1009. doi:10.1029/2002GB001938

    Article  Google Scholar 

  • Weber TS, Deutsch C (2010) Ocean nutrient ratios governed by plankton biogeography. Nature 467:550–554

    Article  PubMed  CAS  Google Scholar 

  • Wright SW, Thomas DP, Marchant HJ, Higgins HW, Mackey MD, Mackey DJ (1996) Analysis of phytoplankton of the Australian sector of the Southern Ocean: Comparisons of microscopy and size frequency data with interpretations of pigment HPLC data using the ‘CHEMTAX’ matrix factorisation program. Mar Ecol Prog Ser 144:285–298

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs Janet Grieve of NIWA, Wellington and Barb Hayden of NIWA, Christchurch for their constructive review of this manuscript. We also thank the officers, crew and scientific staff on RV Tangaroa for their assistance in this voyage. This research was funded by the New Zealand Government under the New Zealand International Polar Year-Census of Antarctic Marine Life Project (Phase 1: So001IPY; Phase 2: IPY2007-01). We gratefully acknowledge project governance by the Ministry of Fisheries Science Team and the Ocean Survey 20/20 CAML Advisory Group (Land Information New Zealand, Ministry of Fisheries, Antarctica New Zealand, Ministry of Foreign Affairs and Trade and National Institute of Water and Atmospheric Research Ltd).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Hoe Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoe Chang, F., Williams, M.J.M., Schwarz, J.N. et al. Spatial variation of phytoplankton assemblages and biomass in the New Zealand sector of the Southern Ocean during the late austral summer 2008. Polar Biol 36, 391–408 (2013). https://doi.org/10.1007/s00300-012-1270-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-012-1270-8

Keywords

Navigation