Skip to main content

Advertisement

Log in

Longevity and growth efficiency of two deep-dwelling Arctic zoarcids and comparison with eight other zoarcid species from different climatic regions

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Our basic knowledge of the ecology, especially the age and growth of polar deep-sea biota is still scarce. This study provides first data about the age and growth of the two abundant Arctic fish species Lycodes frigidus and Lycodes squamiventer (Zoarcidae). Lycodes frigidus was caught at the deeper parts (1,546–3,576 m depth) of the HAUSGARTEN observatory (HG), west of Svalbard. The congener Lycodes squamiventer was caught at two HG stations (1,273–1,546 m) and at the Håkon Mosby Mud Volcano (HMMV, ~1,250 m), a cold seep in the southwestern Barents Sea. Age was determined by sagittal otolith increment analysis. Growth performance was assessed by fitting age–length data to a von Bertalanffy growth equation. Our data suggest that L. frigidus and L. squamiventer attain maximum ages of 33 and 21 years, respectively. Lycodes squamiventer from the HMMV had significantly higher growth rates and their maximum age and length was slightly lower compared to conspecifics from the shallow HG stations. Von Bertalanffy growth equations were L t  = 58.9 ∗ (1 − e(−0.042*t)) for L. frigidus, and L t  = 25.3 ∗ (1 − e(−0.074*t)) and L t  = 24.2 ∗ (1 − e(−0.099 * t)) for L. squamiventer from HG and the HMMV, respectively. A comparison of these data with those of eight other zoarcids indicates that growth performances are correlated with temperature: the higher the annual mean temperatures experienced, the higher the growth rates. However, maximum ages decrease with increasing temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albrechtsen K (1968) A dyeing technique for otolith age reading. J Cons Perm Int Explor Mer 32:278–280

    Google Scholar 

  • Anderson ME (1984) Zoarcidae: development and relationships. In Ontogeny and systematics of fishes. Am Soc Ichthyol Herpetol Spec Publ 1:579–582

    CAS  Google Scholar 

  • Anderson ME, Fedorov VV (2004) Annotated checklist of fishes: family Zoarcidae Swainson 1839—eelpouts. Calif Acad Sci 34:1–58

    Google Scholar 

  • Andriyashev AP (1986) Zoarcidae. In: Whitehead PJP, Bauchot M-L, Hureau JC, Nielsen J, Tortonese E (eds) Fishes of the north-eastern Atlantic and the Mediterranean, vol III. The Chaucer Press, Bungay, pp 1130–1150

    Google Scholar 

  • Balanov AA, Badaev OZ, Napazakov VV, Chuchukalo VI (2006) Distribution and some biological features of Lycodes raridens (Zoarcidae) in the western part of the Bering Sea. J Ichthyol 46:148–155

    Article  Google Scholar 

  • Becker GA, Schulz A (2000) Atlas of North Sea surface temperatures. Weekly and monthly means for the period 1969–1993. Dtsch Hydrogr Zeitschr Suppl 11:1–79

    Google Scholar 

  • Bergmann M, Dannheim J, Bauerfeind E, Klages M (2009) Trophic relationships along a bathymetric gradient at the deep-sea observatory HAUSGARTEN. Deep-Sea Res I 56:408–424

    Article  CAS  Google Scholar 

  • Bergmann M, Soltwedel T, Klages M (2011) The interannual variability of megafaunal assemblages in the Arctic deep sea: preliminary results from the HAUSGARTEN observatory (79ºN). Deep-Sea Res I (in press)

  • Beverton RJH, Holt SJ (1957) On the dynamics of exploited fish populations. Fish. Investig. Ser. II vol XIX. Fisheries Laboratory, Lowestoft, pp 533

  • Bjelland O, Bergstad OA, Skjæraasen JE, Meland K (2000) Trophic ecology of deep-water fishes associated with the continental slope of the eastern Norwegian Sea. Sarsia 85:101–117

    Google Scholar 

  • Brodte E (2001) Wachstum und Fruchtbarkeit der Aalmutterarten Zoarces viviparus (Linné) und Pachycara brachycephalum (Pappenheim) aus unterschiedlichen klimatischen Regionen. Diploma thesis, University of Bremen, pp 86

  • Brodte E, Knust R, Pörtner HO, Arntz WE (2006) Biology of the Antarctic eelpout Pachycara brachycephalum. Deep-Sea Res II 53:1131–1140

    Article  Google Scholar 

  • Budaeva NE, Mokievsky VO, Soltwedel T, Gebruk AV (2008) Horizontal distribution patterns in Arctic deep-sea macrobenthic communities. Deep-Sea Res I 55:1167–1178

    Article  Google Scholar 

  • Byrkjedal I, Høines Å (2007) Distribution of demersal fish in the south-western Barents Sea. Polar Res 26:135–151

    Article  Google Scholar 

  • Campbell NA, Reece JB (2003) Biologie, 6. Auflage. Auflage. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Clarke A (1983) Life in cold water: the physiological ecology of polar marine ectotherms. Oceanogr Mar Biol 21:341–453

    Google Scholar 

  • Clarke A, Johnston NM (1999) Scaling of metabolic rate with body mass and temperature in teleost fish. J Anim Ecol 68:893–905

    Article  Google Scholar 

  • Clarke A, North AW (1991) Is the growth of polar fish limited by temperature? In: Di Prisco G, Maresca B, Tota B (eds) Biology of Antarctic fishes. Springer, Berlin, pp 54–69

    Google Scholar 

  • Coad B, Waszczuk H, Labignan I (1995) Encyclopedia of Canadian fishes. Canadian Museum of Nature and Canadian Sportfishing Production, Waterdown

    Google Scholar 

  • Ekau W (1988) Ökomorphologie nototheniider Fische aus dem Weddellmeer, Antarktis. Rep Polar Mar Res 51:1–140

    Google Scholar 

  • Gebruk AV, Krylova EM, Lein AY, Vinogradov GM, Anderson E, Pimenov NV, Cherkashev GA, Crane K (2003) Methane seep community of the Håkon Mosby Mud Volcano (the Norwegian Sea): composition and trophic aspects. Sarsia 88:394–403

    Article  Google Scholar 

  • Gotthard K (2000) Increased risk of predation as a cost of high growth rate: an experimental test in the speckled wood butterfly, Pararge aegeria. J Anim Ecol 69:896–902

    Article  Google Scholar 

  • Jerosch K, Schlüter M, Foucher J-P, Allais A-G, Klages M, Edy C (2007) Spatial distribution of mud flows, chemoautotrophic communities, and biogeochemical habitats at Håkon Mosby Mud Volcano. Mar Geol 243:1–17

    Article  Google Scholar 

  • Jobling M (2002) Environmental factors and rates of development and growth. In: Hart PJB, Reynolds JD (eds) Handbook of fish biology and fisheries, Volume 1: fish biology. Blackwell Publishing, Malden, pp 97–122

    Chapter  Google Scholar 

  • Kappenman RF (1981) A method for growth curve comparisons. Fish Bull 79:95–101

    Google Scholar 

  • Kaul N, Foucher J-P, Heesemann M (2006) Estimating mud expulsion rates from temperature measurements on Håkon Mosby Mud Volcano, SW Barents Sea. Mar Geol 229:1–14

    Article  Google Scholar 

  • Klages M, Boetius A, Christensen JP, Deubel H, Piepenburg D, Schewe I, Soltwedel T (2003) The benthos of Arctic Seas and its role for the carbon cycle at the seafloor. In: Stein R, Macdonald RW (eds) The Arctic organic carbon cycle. Springer, Heidelberg, pp 139–167

    Google Scholar 

  • Kock K-H, Duhamel G, Hureau J-C (1985) Biology and status of exploited Antarctic fish stocks: a review. BIOMASS Sci Ser 6:1–143

    Google Scholar 

  • La Mesa M, Vacchi M (2001) Age and growth of high Antarctic notothenioid fish. Antarct Sci 13:227–235

    Google Scholar 

  • Lalli CM, Parsons TR (1997) Biological oceanography: an introduction, 2nd edn. Elsevier Butterworth-Heinemann, Oxford

    Google Scholar 

  • Levings CD (1969) The zoarcid Lycodopsis pacifica in outer Burrard Inlet, British Columbia. J Fish Res Board Can 26:2403–2412

    Article  Google Scholar 

  • Matallanas J (2011) Description of two new species of Ophthalmolycus (Teleostei: Zoarcidae) from the Southern Ocean and key to species of the genus. J Mar Biol Assoc UK 91(2):561–567

    Article  Google Scholar 

  • McAllister DE, Anderson ME, Hunter JG (1981) Deep-water eelpouts, Zoarcidae, from Arctic Canada and Alaska. Can J Fish Aquat Sci 28:821–839

    Article  Google Scholar 

  • Mecklenburg CW, Møller PR, Steinke D (2010) Biodiversity of Arctic marine fishes: taxonomy and zoogeography. Mar Biodivers. doi:10.1007/s12526-010-0070-z

  • Metcalfe NB, Monaghan P (2001) Compensation for a bad start: grow now, pay later? Trends Ecol Evol 16:254–260

    Article  PubMed  Google Scholar 

  • Metcalfe NB, Monaghan P (2003) Growth versus life span: perspectives from evolutionary ecology. Exp Gerontol 38:935–940

    Article  PubMed  Google Scholar 

  • Milkov A, Vogt P, Cherkashev G, Ginsburg G, Chernova N, Andriashev A (1999) Sea-floor terrains of Håkon Mosby Mud Volcano as surveyed by deep-tow video and still photography. Geo-Mar Lett 19:38–47

    Article  Google Scholar 

  • Milkov AV, Vogt PR, Crane K, Lein AY, Sassen R, Cherkashev GA (2004) Geological, geochemical, and microbial processes at the hydrate-bearing Håkon Mosby Mud Volcano: a review. Chem Geol 205:347–366

    Article  CAS  Google Scholar 

  • Møller PR (2001) Redescription of the Lycodes pallidus species complex (Pisces, Zoarcidae), with a new species from the Arctic/North Atlantic Ocean. Copeia 2001(4):972–996

    Article  Google Scholar 

  • Møller PR, Gravlund P (2003) Phylogeny of the eelpout genus Lycodes (Pisces, Zoarcidae) as inferred from mitochondrial cytochrome b and 12S rDNA. Mol Phylogenetics Evol 26:369–388

    Article  Google Scholar 

  • Møller PR, Nielsen JG, Anderson ME (2005) Systematics of polar fishes. Fish Physiol 22:25–78

    Article  Google Scholar 

  • Nash RDM (1986) Aspects of the general biology of Vahl’s eelpout, Lycodes vahlii gracilis M. Sars, 1867 (Pisces, Zoarcidae), in Oslofjorden, Norway. Sarsia 71:289–296

    Google Scholar 

  • Nelson JS (2006) Fishes of the world, 4th edn. Wiley, Hoboken, p 624

    Google Scholar 

  • Niemann H, Lösekann T, de Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter EJ, Schlüter M, Klages M, Foucher JP, Boetius A (2006) Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nat 443:854–858

    Article  CAS  Google Scholar 

  • Pauly D (1980) On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. J Cons Int Explor Mer 39:175–192

    Google Scholar 

  • Pimenov N, Savvichev A, Rusanov I, Lein A, Ivanov M (2000) Microbiological processes of the carbon and sulfur cycles at cold methane seeps of the North Atlantic. Microbiol 69:709–720

    Article  CAS  Google Scholar 

  • Pitcher TJ, Hart PJB (1982) Fisheries Ecol. Croom Helm, London

    Google Scholar 

  • Pörtner HO, Berdal B, Blust R, Brix O, Colosimo A, De Wachter B, Giuliani A, Johansen T, Fischer T, Knust R, Lannig G, Naevdal G, Nedenes A, Nyhammer G, Sartoris FJ, Serendero I, Sirabella P, Thorkildsen S, Zakhartsev M (2001) Climate induced temperature effects on growth performance, fecundity and recruitment in marine fish: developing a hypothesis for cause and effect relationships in Atlantic cod (Gadus morhua) and common eelpout (Zoarces viviparus). Cont Shelf Res 21:1975–1997

    Article  Google Scholar 

  • Prouse NJ, McAllister DE (1986) The Glacial Eelpout, Lycodes frigidus, from the Arctic Canadian Basin, new to the Canadian ichthyofauna. Can Field-Nat 100:325–329

    Google Scholar 

  • Schauer U, Beszczynska-Möller A, Walczowski W, Fahrbach E, Piechura J, Hansen E (2008) Variation of measured heat flow through the Fram Strait between 1997 and 2006. In: Dickson RR, Meincke J, Rhines P (eds) Arctic-Subarctic Ocean Fluxes. Springer Science + Business Media B.V., pp 65–85

  • Schlichtholz P, Houssais M-N (2002) An overview of the θ−S correlations in Fram Strait based on the MIZEX 84 data. Oceanol 44:243–272

    Google Scholar 

  • Soltwedel T, Bauerfeind E, Bergmann M, Budaeva N, Hoste E, Jaeckisch N, von Juterzenka K, Matthiessen J, Mokievsky V, Nöthig E-M, Quéric N-V, Sablotny B, Sauter E, Schewe I, Urban-Malinga B, Wegner J, Wlodarska-Kowalczuk M, Klages M (2005) HAUSGARTEN: multidisciplinary investigations at a deep-sea, long-term observatory in the Arctic Ocean. Oceanogr 18:46–61

    Google Scholar 

  • Soltwedel T, Jaeckisch N, Ritter N, Hasemann C, Bergmann M, Klages M (2009) Bathymetric patterns of megafaunal assemblages from the arctic deep-sea observatory HAUSGARTEN. Deep-Sea Res I 56:1856–1872

    Article  CAS  Google Scholar 

  • Stefansdottir L, Solmundsson J, Marteinsdottir G, Kristinsson K, Jonasson JP (2010) Groundfish species diversity and assemblage structure in Icelandic waters during recent years of warming. Fish Oceanogr 19(1):42–62

    Article  Google Scholar 

  • Taylor CC (1958) A note on Lee’s phenomenon in Georges Bank haddock. ICNAF Spec Publ 1:243–251

    Google Scholar 

  • Tokranov AM, Orlov AM (2002) Distribution and some features of the biology of eelpouts Lycodes brunneofasciatus and L. albolineatus (Zoarcidae) in the Pacific waters off the northern Kuril Islands and southeast Kamchatka. J Ichthyol 42:579–590

    Google Scholar 

  • Vinogradova NG, Turpaeva EP, Moskalev LI, Galkin SV, Bagirov NE (1996) Species composition of the bottom fauna in the area of study, leading and common forms and modifications of communities. In: Vinogradov ME, Sagalevitch AM, Khetagurov SV (eds) Oceanographic research and underwater technical operations at the site of the nuclear submarine Komsomolets wreck. Nauka, Moscow, pp 202–206 (in Russian)

  • Vogt PR, Cherkashev G, Ginsburg G, Ivanov G, Milkov A, Crane K, Lein A, Sundvor E, Pimenov N, Egorov A (1997) Haakon Mosby Mud Volcano provides unusual example of venting. EOS Transact Am Geophys Union 78(48):549 556–557

    Article  Google Scholar 

  • Von Dorrien CF (1993) Ökologie und Respiration ausgewählter arktischer Bodenfischarten. Rep Polar Mar Res 125:1–99

    Google Scholar 

  • Wakeling JM, Johnston IA (1998) Muscle power output limits fast-start performance in fish. J Exp Biol 201:1505–1526

    PubMed  CAS  Google Scholar 

  • Włodarska-Kowalczuk M, Kendall MA, Węsławski JM, Klages M, Soltwedel T (2004) Depth gradients of benthic standing stock and diversity on the continental margin at a high-latitude ice-free site (off Spitsbergen, 79°N). Deep-Sea Res I 51:1903–1914

    Article  Google Scholar 

  • Wright PJ, Panfili J, Morales-Nin B, Geffen AJ (2002) Types of calcified structures—otoliths. In: Panfili J, de Pontual H, Troadec H, Wright PJ (eds) Manual of fish sclerochronology. Ifremer-IRD coedition, Brest, pp 31–57

    Google Scholar 

Download references

Acknowledgments

We thank the officers and crews of RVs Polarstern and L’Atalante and the teams of the remotely operated vehicles "Victor 6000" and "Quest 4000" for their support. J. Wegner, B. Sablotny and N. Koschnick gave technical support during lander deployments. E. Brodte gave instructions on the preparation of the otoliths, their reading and provided age estimates. M. Volkenandt and A. Pappert assisted in the sanding of otoliths. We are indebted to Peter Rask Møller, David Bailey and an anonymous reviewer for improvements to an earlier draft of the manuscript. This paper is based on Nicole Hildebrandt’s diploma thesis (Carl von Ossietzky Universität Oldenburg) and is publication no. awi-n19293 of the Alfred Wegener Institute for Polar and Marine Research.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Hildebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hildebrandt, N., Bergmann, M. & Knust, R. Longevity and growth efficiency of two deep-dwelling Arctic zoarcids and comparison with eight other zoarcid species from different climatic regions. Polar Biol 34, 1523–1533 (2011). https://doi.org/10.1007/s00300-011-1011-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-011-1011-4

Keywords

Navigation