Skip to main content

Advertisement

Log in

Environmental influences on bacterial diversity of soils on Signy Island, maritime Antarctic

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Soil bacterial diversity at environmentally distinct locations on Signy Island, South Orkney Islands was examined using the denaturing gradient gel profiling approach. A range of chemical variables in soils at each site was determined in order to describe variation between locations. No apparent differences in Shannon Diversity Index (H′) were observed. However, as revealed in an analysis of similarity (ANOSIM), the dominant bacterial communities of all eight studied locations were significantly different. Within this, higher levels of similarity were observed between penguin rookeries, seal wallows and vegetated soils, all of which share varying levels of impact from vertebrate activity, in contrast with more barren soil. In addition, the lowest H′ value was detected from the latter soil which also has the most extreme environmental conditions, and its bacterial community has the greatest genetic distance from the other locations. DGGE analyses indicated that the majority of the excised and sequenced bands were attributable to the Bacteroidetes. Across a range of ten environmental variables, multivariate correlation analysis suggested that a combination of pH, conductivity, copper and lead content potentially contributed explanatory value to the measured soil bacterial diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams BJ, Bardgett RB, Ayres E, Wall DH, Aislabie J, Bamforth S, Bargagli R, Cary C, Cavacini P, Connell L, Convey P, Fell JW, Frati F, Hogg ID, Newsham KK, O’Donnell A, Russell N, Seppelt RD, Stevens MI (2006) Diversity and distribution of Victoria Land biota. Soil Biol Biochem 38:3003–3018. doi:10.1016/j.soilbio.2006.04.030

    Article  CAS  Google Scholar 

  • Aislabie JM, Chhour K, Saul DJ, Miyauchi S, Ayton J, Paetzold RF, Balks MR (2006) Dominant bacteria in soils of Marble Point and Wright Valley, Victoria Land, Antarctica. Soil Biol Biochem 38:3041–3056. doi:10.1016/j.soilbio.2006.02.018

    Article  CAS  Google Scholar 

  • Aislabie JM, Jordan S, Barker GM (2008) Relation between soil classification and bacterial diversity in soils of the Ross Sea region, Antarctica. Geoderma 144:9–20. doi:10.1016/j.geoderma.2007.10.006

    Article  CAS  Google Scholar 

  • Arnold RJ, Convey P, Hughes KA, Wynn-Williams DD (2003) Seasonal periodicity of physical factors, inorganic nutrients and microalgae in Antarctic fellfields. Polar Biol 26:396–403. doi:10.1007/s00300-003-0503-2

    Google Scholar 

  • Barrett JE, Virginia RA, Wall DH, Cary SC, Adams BJ, Hacker AL, Aislabie JM (2006) Co-variation in soil biodiversity and biogeochemistry in northern and southern Victoria Land, Antarctica. Antarct Sci 18:535–548. doi:10.1017/S0954102006000587

    Article  Google Scholar 

  • Bokhorst S, Huiskes A, Convey P, Aerts R (2007) External nutrient inputs into terrestrial ecosystems of the Falkland Islands and the Maritime Antarctic region. Polar Biol 30:1315–1321. doi:10.1007/s00300-007-0256-4

    Article  Google Scholar 

  • Bokhorst S, Huiskes A, Convey P, van Bodegom PM, Aerts R (2008) Climate change effects on soil arthropod communities from the Falkland Islands and the Maritime Antarctic. Soil Biol Biochem 40:1547–1556. doi:10.1016/j.soilbio.2008.01.017

    Article  CAS  Google Scholar 

  • Bölter M, Blume HP, Schneider D, Beyer L (1997) Soil properties and distributions of invertebrates and bacteria from King George Island (Arctowski Station), Maritime Antarctic. Polar Biol 18:295–304. doi:10.1007/s003000050191

    Article  Google Scholar 

  • Caulkett AP, Ellis-Evans JC (1997) Chemistry of streams of Signy Island, maritime Antarctic: sources of major ions. Antarct Sci 9:3–11. doi:10.1017/S0954102097000023

    Article  Google Scholar 

  • CCAMLR (1997) CCAMLR ecosystem monitoring program: standard methods for monitoring studies. Commission for the Conservation of Antarctica Living Resources (CCAMLR), Hobart

  • Chong CW, Tan GYA, Wong RCS, Riddle MJ, Tan IKP (2009) DGGE fingerprinting of bacteria in soils from eight ecologically different sites around Casey Station, Antarctica. Polar Biol 32:853–860. doi:10.1007/s00300-009-0585-6

    Article  Google Scholar 

  • Chown SL, Convey P (2007) Spatial and temporal variability across life’s hierarchies in the terrestrial Antarctic. Philos Trans R Soc B 362:2307–2331. doi:10.1098/rstb.2006.1949

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Convey P (2001) Antarctic ecosystems. In: Levin SA (ed) Encyclopedia of biodiversity, vol 1. Academic Press, San Diego, pp 171–184

    Google Scholar 

  • Davey MC, Rothery P (1993) Primary colonization by microalgae in relation to spatial variation in edaphic factors on Antarctic fellfield soils. J Ecol 81:335–343. doi:10.2307/2261503

    Article  Google Scholar 

  • Deheyn DD, Gendreau P, Baldwin RJ, Latz MI (2005) Evidence for enhanced bioavailability of trace elements in the marine ecosystem of Deception Island, a volcano in Antarctica. Mar Environ Res 60:1–33. doi:10.1016/j.marenvres.2004.08.001

    Article  CAS  PubMed  Google Scholar 

  • Dick LK, Field KG (2004) Rapid estimation of numbers of fecal bacteroidetes by use of a quantitative PCR assay for 16S rRNA genes. Appl Environ Microbiol 70:5695–5697. doi:10.1128/AEM.70.9.5695-5697.2004

    Article  CAS  PubMed  Google Scholar 

  • Engelen A, Convey P, Hodgson DA, Worland MR, Ott S (2008) Soil properties of an Antarctic inland site: implications for ecosystem development. Polar Biol 31:1453–1460. doi:10.1007/s00300-008-0486-0

    Article  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci 103:626–631. doi:10.1073_pnas.0507535103

    Article  CAS  PubMed  Google Scholar 

  • Flint HJ, Duncan SH, Scott KP, Louis P (2007) Interactions and competition within the microbial community of the human colon: links between diet and health. Environ Microbiol 9:1101–1111. doi:10.1111/j.1462-2920.2007.01281.x

    Article  CAS  PubMed  Google Scholar 

  • Frenot Y, Chown SL, Whinam J, Selkirk PM, Convey P, Skotnicki M, Bergstrom DM (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev Camb Philos Soc 80:45–72. doi:10.1017/S1464793104006542

    Article  PubMed  Google Scholar 

  • Gafan GP, Lucas VS, Roberts GJ, Petrie A, Wilson M, Spratt DA (2005) Statistical analyses of complex denaturing gradient gel electrophoresis profiles. J Clin Microbiol 43:3971–3978. doi:10.1128/JCM.43.8.3971-3978.2005

    Article  CAS  PubMed  Google Scholar 

  • Green K, Williams R (1985) Observations on food remains in faeces of elephant, leopard and crabeater seals. Polar Biol 6:1432–2056. doi:10.1007/BF00446239

    Google Scholar 

  • Holdgate MW (1977) Life sciences: terrestrial ecosystem in Antarctic. Philos Trans R Soc B 279:5–25. doi:10.1098/rstb.1977.0068

    Article  Google Scholar 

  • Honda K, Yamamoto Y, Tatsukawa R (1987) Distribution of heavy metals in Antarctic marine ecosystem. Proc NIPR Symp Polar Biol 1:184–197

    Google Scholar 

  • Kowalchuk GA, Drigo B, Yergeau E, van Veen JA (2006) Assessing bacterial and fungal community structure in soil using ribosomal RNA and other structural gene markers. In: Nannipieri P, Smalla K (eds) Nucleic Acids and Proteins in Soil, Soil Biology, vol 8, pp 159–188

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163. doi:10.1093/bib/5.2.150

    Article  CAS  PubMed  Google Scholar 

  • Li S, Xiao X, Yin X, Wang F (2006) Bacterial community along a historic lake sediment core of Ardley Island, west Antarctica. Extremophiles 10:461–467. doi:10.1007/s00792-006-0523-2

    Article  CAS  PubMed  Google Scholar 

  • Lynnes AS, Reid K, Crozall JP, Trathan PN (2002) Conflict or co-existence? Foraging distribution and competition for prey between Adélie and chinstrap penguins. Mar Biol (Berl) 141:1165–1174. doi:10.1007/s00300-004-0617-1

    Article  Google Scholar 

  • Melick DR, Hovenden MJ, Seppelt RD (1994) Phytogeography of bryophyte and lichen vegetation in the Windmill Islands, Wilkes Land, Continental Antarctica. Plant Ecol 111:71–87. doi:10.1007/BF00045578

    Google Scholar 

  • Michel RFM, Schaefer CEGR, Dias LE, Simas FNB, Benites VDM, Mendonça EDS (2006) Ornithogenic Gelisols (Cryosols) from maritime Antarctica: pedogenesis, vegetation, and carbon studies. Soil Sci Soc Am J 70:1370–1376. doi:10.2136/sssaj2005.0178

    Article  CAS  Google Scholar 

  • Mizutani H, Wada E (1988) Nitrogen and carbon isotope ratios in seabird rookeries and their ecological implications. Ecology 69:340–349. doi:10.2307/1940432

    Article  Google Scholar 

  • Moosvi SA, McDonald IR, Pearce DA, Kelly DP, Wood AP (2005) Molecular detection and isolation from Antarctica of methylotrophic bacteria able to grow with methylated sulfur compounds. Syst Appl Microbiol 28:541–554. doi:10.1016/j.syapm.2005.03.002

    Article  CAS  PubMed  Google Scholar 

  • Nakatsu CH (2007) Soil microbial community analysis using denaturing gradient gel electrophoresis. Soil Sci Soc Am J 71:562–571. doi:10.2136/sssaj2006.0080

    Article  CAS  Google Scholar 

  • Newberry CJ, Webster G, Cragg BA, Parkes RJ, Weightman AJ, Fry JC (2004) Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190. Environ Microbiol 6:274–287. doi:10.1111/j.1462-2920.2004.00568.x

    Article  PubMed  Google Scholar 

  • Pearce DA (2003) Bacterioplankton community structure in a maritime Antarctic Oligotrophic Lake during a period of Holomixis, as determined by Denaturing Gradient Gel Electrophoresis (DGGE) and fluorescence in situ hybridization (FISH). Microb Ecol 46:92–105. doi:1007/S00248-002-2039-3

    Article  CAS  PubMed  Google Scholar 

  • Pearce DA, van der Gast CJ, Lawley B, Ellis-Evans JC (2003) Bacterioplankton community diversity in a maritime Antarctic lake, determined by culture-dependent and culture-independent techniques. FEMS Microbiol Ecol 45:59–70. doi:10.1016/S0168-6496(03)00110-7

    Article  CAS  PubMed  Google Scholar 

  • Powell SM, Bowman JP, Snape I, Stark JS (2003) Microbial community in pristine and polluted nearshore Antarctic sediments. FEMS Microbiol Ecol 45:135–145. doi:10.1016/S0168-6496(03)00135-1

    Article  CAS  PubMed  Google Scholar 

  • Powell SM, Snape I, Bowman JP, Thompson BAW, Stark JS, McCammon SA, Riddle MJ (2005) A comparison of the short term effects of diesel fuel and lubricant oils on Antarctic benthic microbial communities. J Exp Mar Biol Ecol 322:53–65. doi:10.1016/j.jembe.2005.02.005

    Article  CAS  Google Scholar 

  • Reid K (1995) The diet of Antarctic fur seals (Arctocephalus gazella Peters 1875) during winter at South Georgia. Antarct Sci 7:241–249. doi:10.1017/S0954102095000344

    Article  Google Scholar 

  • Santos IR, Silva-Filho EV, Schaefer CEGR, Albuqueque-Filho MR, Campos LS (2005) Heavy metal contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island. Mar Pollut Bull 50:185–194. doi:10.1016/j.marpolbul.2004.10.009

    Article  CAS  PubMed  Google Scholar 

  • Santos IR, Silva-Filho EV, Schaefer C, Sella SM, Silva CA, Gomes V, Passos MJACR, Ngan PV (2006) Baseline mercury and zinc concentrations in terrestrial and coastal organisms of Admiralty Bay, Antarctica. Environ Pollut 140:304–311. doi:10.1016/j.envpol.2005.07.007

    Article  PubMed  CAS  Google Scholar 

  • Scouller RC, Snape I, Stark JS, Gore DB (2006) Evaluation of geochemical methods for discrimination of metal contamination in Antarctic marine sediments: a case study from Casey Station. Chemosphere 65:294–309. doi:10.1016/j.chemosphere.2006.02.062

    Article  CAS  PubMed  Google Scholar 

  • Simas FNB, Schaefer CEGR, Melo VF, Albuquerque-Filho MR, Michel FM, Pareira VV, Gomes MRM, Da Costa LM (2007) Ornithogenic cryosols from maritime Antarctica: phosphatization as a soil forming process. Geoderma 138:191–203. doi:10.1016/j.geoderma.2006.11.011

    Article  CAS  Google Scholar 

  • Smith RIL (1972) Vegetation of the South Orkney Islands with particular reference to Signy Island. Br Antarct Surv Sci Rep 68:124

    Google Scholar 

  • Smith RIL (1998) Destruction of Antarctic terrestrial ecosystems by rapidly increasing fur seal population. Biol Conserv 45:55–72

    Google Scholar 

  • Smith VR (2005) Moisture, carbon and inorganic nutrient controls of soil respiration at a sub-Antarctic island. Soil Biol Biochem 37:81–91. doi:10.1016/j.soilbio.2004.07.026

    Article  CAS  Google Scholar 

  • Snape I, Scouller RC, Stark SC, Stark J, Riddle MJ, Gore DB (2004) Characterisation of the dilute HCl extraction method for the identification of metal contamination in Antarctic marine sediments. Chemosphere 57:491–504. doi:10.1016/j.chemosphere.2005.07.040

    Article  CAS  PubMed  Google Scholar 

  • Stark JS, Riddle MJ, Snape I, Scouller RC (2003) Human impacts in Antartic marine soft-sediment assemblages: correlations between multivariate biological patterns and environmental variables at Casey Station. Estuar Coast Shelf Sci 56:717–734. doi:10.1016/S0272-7714(02)00291-3

    Article  CAS  Google Scholar 

  • Tin T, Fleming ZL, Hughes KA, Ainley DG, Convey P, Moreno CA, Pfeiffer S, Scott J, Snape I (2009) Review: impacts of local human activities on the Antarctic environment. Antarct Sci 21:3–33. doi:10.1017/S0954102009001722

    Article  Google Scholar 

  • Usher MB, Booth RG (1986) Arthropod communities in a maritime Antarctic moss-turf habitat: multiple scales of pattern in the mites and Collembola. J Anim Ecol 55:155–170. doi:10.2307/4699

    Article  Google Scholar 

  • Vincent WF (1988) Microbial ecosystems of Antarctica. Cambridge University Press, Cambridge, p 303

    Google Scholar 

  • Wall DH (2005) Biodiversity and ecosystem functioning in terrestrial habitats of Antarctica. Antarct Sci 17:523–531. doi:10.1017/S0954102005002944

    Article  Google Scholar 

  • Wynn-Williams DD (1996) Antarctic microbial diversity: the basis of polar ecosystem processes. Biodivers Conserv 5:1271–1293. doi:10.1007/BF00051979

    Article  Google Scholar 

  • Yamamoto Y, Honda K, Tatsukawa R (1987) Heavy metal accumulation in Antarctic krill Euphausia Superba. Proc NIPR Symp Polar Biol 1:198–204

    Google Scholar 

  • Yergeau E, Bokhorst S, Huiskes AHL, Boschker HTS, Aerts R, Kowalchuk GA (2007a) Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiol Ecol 59:436–451. doi:10.1111/j.1574-6941.2006.00200.x

    Article  CAS  PubMed  Google Scholar 

  • Yergeau E, Newsham KE, Pearce DA, Kowalchuk GA (2007b) Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ Microbiol 9:2670–2682. doi:10.1111/j.1462-2920.2007.01379.x

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Xia L, Sun L, Luo H, Wang Y (2008) Animal excrement: a potential biomonitor of heavy metal contamination in the marine environment. Sci Total Environ 399:179–185. doi:10.1016/j.scitotenv.2008.03.005

    Article  CAS  PubMed  Google Scholar 

  • Zdanowski MK, Weglenski P, Golik P, Sasin JM, Borsuk P, Zmuda MJ, Stankovic A (2004) Bacterial diversity in Adélie penguin, Pygoscelis adeliae, guano: molecular and morpho-physiological approaches. FEMS Microbiol Ecol 50:163–173. doi:10.1016/j.femsec.2004.06.012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was funded by the Malaysian Antarctic Research Programme (MARP), and the British Antarctic Survey (BAS) provided logistic support and field training. It also forms a contribution to the BAS BIOFLAME and SCAR EBA research programmes. We thank Roger Worland and David Routledge for assistance in sample collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Wie Chong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 334 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chong, C.W., Dunn, M.J., Convey, P. et al. Environmental influences on bacterial diversity of soils on Signy Island, maritime Antarctic. Polar Biol 32, 1571–1582 (2009). https://doi.org/10.1007/s00300-009-0656-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-009-0656-8

Keywords

Navigation