Skip to main content

Advertisement

Log in

Does climate change influence the availability and quality of reindeer forage plants?

  • Review
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The northward and upward movement of the tree line and gradual replacement of lichens with vascular plants associated with increasing temperatures and nutrient availability may change the reindeer pastures in Northern Fennoscandia. The productivity of reindeer forage will most probably increase, but their protein (nitrogen) concentrations may decrease because of higher temperatures and CO2 concentration. In the long term, the nutritive value of forage will depend on the mineralization rate and nutrient uptake from the soil. Enhanced UV-B is likely to increase the concentration of phenolics, decreasing forage quality and choice, but reindeer may adapt to increased phenolics. Increased winter precipitation, the occurrence of ice layers, deeper snow cover, and the appearance of molds beneath the snow cover may reduce the availability and/or quality of reindeer forage, but prolongation of snowless periods might have the opposite effect. The net balance of negative and positive effects will vary regionally depending on the climate, bedrock, vegetation, reindeer herding systems and socio-political factors. Multidisciplinary research is needed most importantly on the effects of the changing winter climate on reindeer forage, and the effect of modified forage quality on reindeer physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. “Northern Fennoscandia” is defined here as a geographic region which includes the northern parts of Norway, Sweden and Finland, and the Kola Peninsula of Northwest Russia.

  2. An “oligotrophic tall-sedge Sphagnum flark fen” is an open aapa mire site type characterized by flark level mire vegetation with typical species such as Sphagnum balticum (Russ.) C. Jens., S. majus (Russ.) C. Jens., S. jensenii H. Lindb., and S. lindbergii Schimp. in Lindb. dominating in the ground layer and Carex limosa L., Scheuchzeria palustris L. and C. rostrata L. in the field layer.

  3. Thirty-two intensive thematic interviews were conducted with reindeer herders from Kaldoaivi and Paistunturi Herding Co-operatives located in the subarctic mountain birch woodland zone and Hammastunturi and Ivalo Herding Co-operatives located in the boreal coniferous forest zone in Finnish Lapland (Vuojala-Magga et al. unpublished).

References

  • ACIA (2005) Arctic climate impact assessment. Cambridge University Press, New York

    Google Scholar 

  • Aerts R, Cornelissen JHC, Dorrepaal E (2006) Plant performance in a warmer world: general responses of plants from cold, northern biomes and the importance of winter and spring events. Plant Ecol 182:65–77

    Google Scholar 

  • Alm U, Birgersson B, Leimar O (2002) The effect of food quality and relative abundance on food choice in fallow deer. Anim Behav 64:439–445. doi:10.1006/anbe.2002.3057

    Google Scholar 

  • Andrews CJ (1996) How do plants survive ice? Ann Bot (Lond) 78:529–536. doi:10.1006/anbo.1996.0157

    CAS  Google Scholar 

  • Arft AM, Walker MD, Gurevitch J, Alatalo JM, Bret-Harte MS, Dale M, Diemer M, Gugerli F, Henry GHR, Jones MH, Hollister RD, Jonsdottir IS, Laine K, Levesque E, Marion GM, Molau U, Molgaard P, Nordenhall U, Raszhivin V, Robinson CH, Starr G, Stenstrom A, Stenstrom M, Totland Ø, Turner PL, Walker LJ, Webber PJ, Welker JM, Wookey PA (1999) Responses of tundra plants to experimental warming: meta-analysis of the international tundra experiment. Ecol Monogr 69:491–511

    Google Scholar 

  • Arnold GW (1985) Regulation of forage intake. In: Hudson RJ, White RG (eds) Bioenergetics of wild herbivores. CRC Press Inc, Boca Raton, pp 81–101

    Google Scholar 

  • Arnold GW, de Boer ES, Boundy CAP (1980) The influence of odour and taste on the food preferences and food intake of sheep. Aust J Agric Res 31:571–587. doi:10.1071/AR9800571

    CAS  Google Scholar 

  • Augner M, Provenza FD, Villalba JJ (1998) A rule of thumb in mammalian herbivores? Anim Behav 56:337–345. doi:10.1006/anbe.1998.0786

    PubMed  Google Scholar 

  • Bailey DK, Provenza FD (2008) Mechanisms determining large-herbivore distribution. In: Prins HHT, van Langevelde F (eds) Resource ecology. Spatial and temporal dynamics of foraging. Springer, Dordrecht, pp 7–28

    Google Scholar 

  • Belovsky GE, Schmitz OJ (1994) Plant defences and optimal foraging by mammalian herbivores. J Mammal 75:816–832. doi:10.2307/1382464

    Google Scholar 

  • Bertrand A, Castonguay Y (2003) Plant adaptations to overwintering stresses and implications of climate change. Can J Bot 81:1145–1152. doi:10.1139/b03-129

    Google Scholar 

  • Bezemer TM, Jones TH (1998) Plant–insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effects. Oikos 82:212–222. doi:10.2307/3546961

    Google Scholar 

  • Bjerke JW, Lerfall K, Elvebakk A (2002) Effects of ultraviolet radiation and PAR on the content of usnic and divaricatic acids in two arctic-alpine lichens. Photochem Photobiol Sci 1:678–685. doi:10.1039/b203399b

    PubMed  CAS  Google Scholar 

  • Bjerke JW, Gwynn-Jones D, Callaghan TV (2005) Effects of enhanced UV-B radiation in the field on the concentration of phenolics and chlorophyll fluorescence in two boreal and arctic-alpine lichens. Environ Exp Bot 53:139–149. doi:10.1016/j.envexpbot.2004.03.009

    CAS  Google Scholar 

  • Björn LO (2007) Stratospheric ozone, ultraviolet radiation, and cryptogams. Biol Conserv 135:326–333. doi:10.1016/j.biocon.2006.10.006

    Google Scholar 

  • Blenckner T, Hillebrand H (2002) North Atlantic oscillation signatures in aquatic and terrestrial ecosystems—a meta-analysis. Glob Change Biol 8:203–212. doi:10.1046/j.1365-2486.2002.00469.x

    Google Scholar 

  • Bryant JP, Kuropat PJ (1980) Selection of winter forage by subarctic browsing vertebrates: the role of plant chemistry. Annu Rev Ecol Syst 11:261–285. doi:10.1146/annurev.es.11.110180.001401

    CAS  Google Scholar 

  • Bryant JP, Chapin FSIII, Klein DR (1983) Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368. doi:10.2307/3544308

    CAS  Google Scholar 

  • Bryant JP, Provenza FD, Pastor J, Reichardt PB, Clausen TP, du Toit JT (1991) Interactions between woody plants and browsing mammals mediated by secondary metabolites. Annu Rev Ecol Syst 22:431–446. doi:10.1146/annurev.es.22.110191.002243

    Google Scholar 

  • Buffoni-Hall RS, Bornman JF, Björn LO (2002) UV-induced changes in pigment content and light penetration in the fruticose lichen Cladonia arbuscula ssp mitis. J Photochem Photobiol B Biol 66:13–20. doi:10.1016/S1011-1344(01)00270-6

    CAS  Google Scholar 

  • Callaghan TV, Björn LO, Chernov Y, Chapin T, Christensen TR, Huntley B, Ims RA, Johansson M, Jolly D, Jonasson S, Matveyeva N, Panikov N, Oechel W, Shaver G, Elster J, Jónsdóttir IS, Laine K, Taulavuori K, Taulavuori E, Zöckler C (2004a) Responses to projected changes in climate and UV-B at the species level. Ambio 33:418–435. doi:10.1639/0044-7447(2004)033[0418:RTPCIC]2.0.CO;2

    PubMed  Google Scholar 

  • Callaghan TV, Björn LO, Chernov Y, Chapin T, Christensen TR, Huntley B, Ims RA, Johansson M, Jolly D, Jonasson S, Matveyeva N, Panikov N, Oechel W, Shaver G, Henttonen H (2004b) Effects on the structure of arctic ecosystems in the short- and long-term perspectives. Ambio 33:436–447. doi:10.1639/0044-7447(2004)033[0436:EOTSOA]2.0.CO;2

    PubMed  Google Scholar 

  • Cetin H, Tufan-Cetin O, Turk A, Tay T, Candan M, Yanikoglu A, Sumbul H (2008) Insecticidal activity of major lichen compounds (−)- and (+)-usnic acid, against the larvae of house mosquito, Culex pipiens L. Parasitol Res 102:1277–1279. doi:10.1007/s00436-008-0905-8

    PubMed  Google Scholar 

  • Chapin FS III (1983) Direct and indirect effects of temperature on arctic plants. Polar Biol 2:47–52. doi:10.1007/BF00258285

    Google Scholar 

  • Chapin FS III, Shaver GR (1996) Physiological and growth responses of arctic plants to a field experiment simulating climatic change. Ecology 77:822–840. doi:10.2307/2265504

    Google Scholar 

  • Chapin FS III, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA (1995) Responses of arctic tundra to experimental and observed changes in climate. Ecology 76:694–711. doi:10.2307/1939337

    Google Scholar 

  • Clark H, Newton PCD, Bell CC, Glasgow EM (1997) Dry matter yield, leaf growth and population dynamics in Lolium perenne/Trifolium repens-dominated pasture turves exposed to two levels of elevated CO2. J Appl Ecol 34:304–316. doi:10.2307/2404878

    Google Scholar 

  • Cocchietto M, Skert N, Nimis PL, Sava G (2002) A review on usnic acid, an interesting natural compound. Naturwissen 89:137–146. doi:10.1007/s00114-002-0305-3

    CAS  Google Scholar 

  • Colpaert A, Kumpula J, Nieminen M (2003) Reindeer pasture biomass assessment using satellite remote sensing. Arctic 56:147–158

    Google Scholar 

  • Cooper EJ, Smith FM, Wookey PA (2001) Increased rainfall ameliorates the negative effect of trampling on the growth of high arctic forage lichens. Symbiosis 31:153–171

    Google Scholar 

  • Cornelissen JHC, Callaghan TV, Alatalo JM, Michelsen A, Graglia E, Hartley AE, Hik DS, Hobbie SE, Press MC, Robinson CH, Henry GHR, Shaver GR, Phoenix GK, Gwynn-Jones D, Jonasson S, Chapin FSIII, Molau U, Neill C, Lee JA, Melillo JM, Sveinbjörnsson B, Aerts R (2001) Global change and arctic ecosystems: is lichen decline a function of increases in vascular plant biomass? J Ecol 89:984–994. doi:10.1111/j.1365-2745.2001.00625.x

    Google Scholar 

  • Cotrufo MF, Ineson P, Scott A (1998) Elevated CO2 reduces the nitrogen concentration of plant tissues. Glob Change Biol 4:43–54. doi:10.1046/j.1365-2486.1998.00101.x

    Google Scholar 

  • Crittenden PD (2000) Aspects of the ecology of matforming lichens. Rangifer 20:127–139

    Google Scholar 

  • Dailey RN, Montgomery DL, Ingram JT, Siemion R, Vasquez M, Raisbeck MF (2008) Toxicity of the lichen secondary metabolite (+)-usnic acid in domestic sheep. Vet Pathol 45:19–25. doi:10.1354/vp.45-1-19

    PubMed  CAS  Google Scholar 

  • Danell K, Utsi PM, Palo RT, Eriksson O (1994) Food plant selection by reindeer during winter in relation to plant quality. Ecography 17:153–158. doi:10.1111/j.1600-0587.1994.tb00088.x

    Google Scholar 

  • de la Rosa TM, Julkunen-Tiitto R, Lehto T, Aphalo PJ (2001) Secondary metabolites and nutrient concentrations in silver birch seedlings under five levels of daily UV-B exposure and two relative nutrient addition rates. New Phytol 150:121–131. doi:10.1046/j.1469-8137.2001.00079.x

    Google Scholar 

  • Dearing MD, Mangione AM, Karasov WH (2000) Diet breadth of mammalian herbivores: nutrient versus detoxification constraints. Oecologia 123:397–405. doi:10.1007/s004420051027

    Google Scholar 

  • Dormann CF, Woodin SJ (2002) Climate change in the Arctic: using plant functional types in a meta-analysis of field experiments. Funct Ecol 16:4–17. doi:10.1046/j.0269-8463.2001.00596.x

    Google Scholar 

  • Duncan AJ, Gordon IJ (1999) Habitat selection according to the ability of animals to eat, digest and detoxify foods. Proc Nutr Soc 58:799–805. doi:10.1017/S0029665199001081

    PubMed  CAS  Google Scholar 

  • Duncan AJ, Poppi DP (2008) Nutritional ecology of grazing and browsing ruminants. In: Gordon IJ, Prins HHT (eds) The ecology of browsing and grazing. Ecol Studies 195. Springer, Berlin, pp 89–116

    Google Scholar 

  • Ehleringer JR, Cerling TE, Dearing MD (2002) Atmospheric CO2 as a global change driver influencing plant–animal interactions. Integr Comp Biol 42:424–430. doi:10.1093/icb/42.3.424

    Google Scholar 

  • Fancy SG, White RG (1987) Energy expenditures for locomotion by barren-ground caribou. Can J Zool 65:122–128

    Google Scholar 

  • FMI (2009) Finnish Meteorological Institute. Database. Snowmelt dates at Inari–Ivalo airport and Inari–Ivalo weather station

  • Forbes BC, Bölter M, Müller-Wille L, Hukkinen J, Konstantinov Y (2006) Reindeer management in northernmost Europe. Linking practical and scientific knowledge in social-ecological systems. Ecol Studies 184. Springer, Berlin

    Google Scholar 

  • Gehrke C, Johanson U, Callaghan TV, Chadwick D, Robinson CH (1995) The impact of enhanced ultraviolet-B radiation on litter quality and decomposition processes in Vaccinium leaves from the subarctic. Oikos 72:213–222. doi:10.2307/3546223

    Google Scholar 

  • Graglia E, Jonasson S, Michelsen A, Schmidt IK, Havström M, Gustavsson L (2001a) Effects of environmental perturbations on abundance of subarctic plants after three, seven and ten years of treatments. Ecography 24:5–12. doi:10.1034/j.1600-0587.2001.240102.x

    Google Scholar 

  • Graglia E, Julkunen-Tiitto R, Shaver G, Schmidt IK, Jonasson S, Michelsen A (2001b) Environmental control and intersite variations of phenolics in Betula nana in tundra ecosystems. New Phytol 151:227–236. doi:10.1046/j.1469-8137.2001.00149.x

    CAS  Google Scholar 

  • Green MJB (1987) Diet composition and quality in Himalayan musk deer based on analysis. J Wildl Manage 51:880–892. doi:10.2307/3801755

    Google Scholar 

  • Gunn A, Skogland T (1997) Responses of caribou and reindeer to global warming. In: Oechel WC, Callaghan T, Gilmanov T, Holten JI, Maxwell B, Molau U, Sveinbjörnson B (eds) Global change and arctic terrestrial ecosystems. Springer, New York, pp 189–200

    Google Scholar 

  • Gustafsson M, Jensen P, De Jonge FH, Schuurman T (1999) Domestication effects on foraging strategies in pigs (Sus scrofa). Appl Anim Behav Sci 62:305–317. doi:10.1016/S0168-1591(98)00236-6

    Google Scholar 

  • Gwynn-Jones D (1999) Enhanced UV-B radiation and herbivory. Ecol Bull 47:77–83

    Google Scholar 

  • Gwynn-Jones D, Lee JA, Callaghan TV (1997) Effects of enhanced UV-B radiation and elevated carbon dioxide concentrations on a sub-arctic forest heath ecosystem. Plant Ecol 128:243–249. doi:10.1023/A:1009771125992

    Google Scholar 

  • Hansen AH, Jonasson ÆS, Michelsen ÆA, Julkunen-Tiitto R (2006) Long-term experimental warming, shading and nutrient addition affect the concentration of phenolic compounds in arctic-alpine deciduous and evergreen dwarf shrubs. Oecologia 147:1–11. doi:10.1007/s00442-005-0233-y

    PubMed  Google Scholar 

  • Hartley AE, Neill C, Melillo JM, Crabtree R, Bowles FP (1999) Plant performance and soil nitrogen mineralization in response to simulated climate change in subarctic dwarf shrub heath. Oikos 86:331–343. doi:10.2307/3546450

    Google Scholar 

  • Hartley SE, Jones CG, Coper GC, Jones TH (2000) Biosynthesis of plant phenolic compounds in elevated atmospheric CO2. Glob Change Biol 6:497–506. doi:10.1046/j.1365-2486.2000.00333.x

    Google Scholar 

  • Heggberget TM, Gaare E, Ball JP (2002) Reindeer (Rangifer tarandus) and climate change: importance of winter forage. Rangifer 22:13–31

    Google Scholar 

  • Helle TP, Jaakkola LM (2008) Transitions in herd management of semi-domesticated reindeer in northern Finland. Ann Zool Fenn 45:81–101

    Google Scholar 

  • Helle T, Kojola I (2008) Demographics in an alpine reindeer herd: effect of density and winter weather. Ecography 31:221–230. doi:10.1111/j.0906-7590.2008.4912.x

    Google Scholar 

  • Helle T, Kojola I, Timonen M (2001) Lumipeitteen vaikutus Käsivarren porolukuihin: mikä on Pohjois-Atlantin säävaihtelun (NAO) merkitys? Suomen Riista 4:75–85

    Google Scholar 

  • Henry GHR, Molau U (1997) Tundra plants and climate change: the International Tundra Experiment (ITEX). Glob Change Biol 3:1–9. doi:10.1111/j.1365-2486.1997.gcb132.x

    Google Scholar 

  • Hobbie SE, Shevtsova A, Chapin FSIII (1999) Plant responses to species removal and experimental warming in Alaskan tussock tundra. Oikos 84:417–434. doi:10.2307/3546421

    Google Scholar 

  • Hofmann RR (1985) Digestive physiology of the deer—their morphophysiological specialisation and adaptation. In: Drew K, Fennessy P (eds) Biology of deer production. Royal Soc New Zealand Bull 22:393–407

  • Hofmann RR (1989) Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78:443–457. doi:10.1007/BF00378733

    Google Scholar 

  • Hollister RD, Webber PJ, Tweedie C (2005) The response of Alaskan arctic tundra to experimental warming: differences between short- and long-term responses. Glob Change Biol 11:525–536. doi:10.1111/j.1365-2486.2005.00926.x

    Google Scholar 

  • IPCC (2007) In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment rep of the intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge

  • Jacobsen E, Skjenneberg S (1975) Some results from feeding experiments with reindeer. In: Luick JR, Lent PC, Klein DR, White RG (eds) Proceedings of First International Reindeer and Caribou Symposium 9–11 August 1972. Biological Papers of the University of Alaska, Fairbanks, pp 95–107

    Google Scholar 

  • Jandt R, Joly K, Meyers CR, Racine C (2008) Slow recovery of lichen on burned caribou winter range in Alaska tundra: potential influences of climate warming and other disturbance factors. Arct Antarct Alp Res 40:89–95. doi:10.1657/1523-0430(06-122)[JANDT]2.0.CO;2

    Google Scholar 

  • Jernsletten J-L, Klokov K (2002) Sustainable reindeer husbandry. Arctic council 2000–2002. Centre for Sami Studies, University of Tromsø

  • Johnson D, Campbell CD, Gwynn-Jones D, Lee JA, Callaghan TV (2002) Arctic soil micro-organisms respond more to long-term ozone depletion than to atmospheric CO2. Nature 416:82–83. doi:10.1038/416082a

    PubMed  CAS  Google Scholar 

  • Jonasson S, Bryant JP, Chapin FSIII, Andersson M (1986) Plant phenols and nutrients in relation to variations in climate and rodent grazing. Am Nat 128:394–408. doi:10.1086/284570

    CAS  Google Scholar 

  • Jonasson S, Michelsen A, Schmidt IK, Nielsen EV (1999) Responses in microbes and plants to changed temperature, nutrient, and light regimes in the Arctic. Ecology 80:1828–1843

    Google Scholar 

  • Julkunen-Tiitto R, Tahvanainen J, Silvola J (1993) Increased CO2 and nutrient status changes affect phytomass and the production of plant defensive secondary chemicals in Salix myrsinifolia (Salisb.). Oecologia 95:495–498

    Google Scholar 

  • Juurola E (2003) Biochemical acclimation patterns of Betula pendula and Pinus sylvestris seedlings to elevated carbon dioxide concentrations. Tree Physiol 23:85–95

    PubMed  CAS  Google Scholar 

  • Kellomäki S, Wang K-Y (2001) Growth and resource use of birch seedlings under elevated carbon dioxide and temperature. Ann Bot (Lond) 87:669–682. doi:10.1006/anbo.2001.1393

    Google Scholar 

  • Kemppainen J, Kettunen J, Nieminen M (2003) Porotalouden taloustutkimusohjelma 2003–2007. Kala- ja riistaraportteja 281

  • Keski-Saari S, Pusenius J, Julkunen-Tiitto R (2005) Phenolic compounds in seedlings of Betula pubescens and B. pendula are affected by enhanced UVB radiation and different nitrogen regimens during early ontogeny. Glob Change Biol 11:1180–1194. doi:10.1111/j.1365-2486.2005.00964.x

    Google Scholar 

  • Kielland K, Chapin FSIII (1992) Nutrient absorption and accumulation in arctic plants. In: Chapin FSIII, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J, Chu EW (eds) Arctic ecosystems in a changing climate: an ecophysiological perspective. Academic Press, San Diego, pp 321–335

    Google Scholar 

  • Klein DR (1970) Tundra ranges north of the boreal forest. J Range Manage 23:8–14. doi:10.2307/3896000

    Google Scholar 

  • Klein DR (1990) Variation in quality of caribou and reindeer forage plants associated with season, plant part and phenology. Rangifer 3:123–130

    Google Scholar 

  • Klein DR (1999) The roles of climate and insularity in establishment and persistence of Rangifer tarandus populations in the high arctic. Ecol Bull 47:96–104

    Google Scholar 

  • Kostina E, Wulff A, Julkunen-Tiitto R (2001) Growth, structure, stomatal responses and secondary metabolites of birch seedlings (Betula pendula) under elevated UV-B radiation in the field. Trees (Berl) 15:483–491. doi:10.1007/s00468-001-0129-3

    CAS  Google Scholar 

  • Kraus TEC, Dahlgren RA, Zasoski RJ (2003) Tannins in nutrient dynamics of forest ecosystems—a review. Plant Soil 256:41–66. doi:10.1023/A:1026206511084

    CAS  Google Scholar 

  • Kumpula J (2001) Winter grazing of reindeer in woodland lichen pasture effect of lichen availability on the condition of reindeer. Small Rumin Res 39:121–130. doi:10.1016/S0921-4488(00)00179-6

    PubMed  Google Scholar 

  • Kumpula T (2006) Very high resolution remote sensing data in reindeer pasture inventory in northern Fennoscandia. In: Forbes BC, Bölter M, Müller-Wille L, Hukkinen J, Konstantinov Y (eds) Reindeer management in northernmost Europe. Linking practical and scientific knowledge in social-ecological systems. Ecological studies, vol 184. Springer, Berlin, pp 167–185

  • Kumpula J, Colpaert A (2003) Effects of weather and snow conditions on reproduction and survival of semi-domesticated reindeer (R. t. tarandus). Polar Res 22:225–233. doi:10.1111/j.1751-8369.2003.tb00109.x

    Google Scholar 

  • Kumpula J, Parikka P, Nieminen M (2000) Occurrence of certain microfungi on reindeer pastures in northern Finland during winter 1996–1997. Rangifer 20:3–8

    Google Scholar 

  • Kuokkanen K, Julkunen-Tiitto R, Keinänen M, Niemelä P, Tahvanainen J (2001) The effect of elevated CO2 and temperature on the secondary chemistry of Betula pendula seedlings. Trees (Berl) 15:378–384. doi:10.1007/s004680100108

    CAS  Google Scholar 

  • Kuokkanen K, Yan S, Niemelä P (2003) Effects of elevated CO2 and temperature on the leaf chemistry of birch Betula pendula (Roth) and the feeding behaviour of the weevil Phyllobius maculicornis. Agric For Entomol 5:209–217. doi:10.1046/j.1461-9563.2003.00177.x

    Google Scholar 

  • Laitinen M-L, Julkunen-Tiitto R, Rousi M (2002) Foliar phenolic composition of European white birch during bud unfolding and leaf development. Physiol Plant 114:450–460. doi:10.1034/j.1399-3054.2002.1140315.x

    PubMed  CAS  Google Scholar 

  • Lavola A (1998) Accumulation of flavonoids and related compounds in birch induced by UV-B irradiance. Tree Physiol 18:53–58

    PubMed  CAS  Google Scholar 

  • Lavola A, Julkunen-Tiitto R (1994) The effect of elevated carbon dioxide and fertilization on primary and secondary metabolites in birch, Betula pendula (Roth). Oecol 99:315–321. doi:10.1007/BF00627744

    Google Scholar 

  • Lavola A, Julkunen-Tiitto R, Roininen H, Aphalo P (1998) Host-plant preference of an insect herbivore mediated by UV-B and CO2 in relation to plant secondary metabolites. Biochem Syst Ecol 26:1–12. doi:10.1016/S0305-1978(97)00104-X

    CAS  Google Scholar 

  • Lavola A, Julkunen-Tiitto R, de la Rosa TM, Lehto T, Aphalo PJ (2000) Allocation of carbon to growth and secondary metabolites in birch seedlings under UV-B radiation and CO2 exposure. Physiol Plant 109:260–267. doi:10.1034/j.1399-3054.2000.100306.x

    CAS  Google Scholar 

  • Lee SE, Press MC, Lee JA, Ingold T, Kurttila T (2000) Regional effects of climate change on reindeer: a case study of the Muotkatunturi region in Finnish Lapland. Polar Res 19:99–105. doi:10.1111/j.1751-8369.2000.tb00333.x

    Google Scholar 

  • Lenart EA, Bowyer RT, Ver Hoef J, Ruess RW (2002) Climate change and caribou: effects of summer weather on forage. Can J Zool 80:664–678. doi:10.1139/z02-034

    Google Scholar 

  • Lundqvist H (2007) Range characteristics and productivity determinants for reindeer husbandry in Sweden. Dissertation. SLU. Acta University of Agricuitural Sueciae 2007, p 100

  • Mackie RI, Aminov RI, Hu W, Klieve AV, Ouwerkerk D, Sundset MA, Kamagata Y (2003) Ecology of uncultivated Oscillospira species in the rumen of cattle, sheep and reindeer as assessed by microscopy and molecular approaches. Appl Environ Microbiol 69:6808–6815. doi:10.1128/AEM.69.11.6808-6815.2003

    PubMed  CAS  Google Scholar 

  • Makkar HPS (2003) Review Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Rumin Res 49:241–256. doi:10.1016/S0921-4488(03)00142-1

    Google Scholar 

  • Mårell A, Hofgaard A, Danell K (2006) Nutrient dynamics of reindeer forage species along snowmelt gradient at different ecological scales. Basic Appl Ecol 7:13–30. doi:10.1016/j.baae.2005.04.005

    Google Scholar 

  • Mathiesen SD, Aagnes Utsi TH, Sørmo W (1999) Forage chemistry and the digestive system in reindeer (Rangifer tarandus tarandus) in northern Norway and on South Georgia. Rangifer 19:91–101

    Google Scholar 

  • Mathiesen SD, Mackie RI, Aschfalk A, Rinø E, Sundset MA (2005) Microbial ecology of the gastrointestinal tract in reindeer—changes through season. In: Holzapfel W, Naughton P (eds) Microbial ecology of the growing animals; biology of the growing animals, vol 3. Elsevier Press, Oxford, pp 73–100

    Google Scholar 

  • Mattila E (2004) Porojen eräiden ravintokasvien esiintyminen poronhoitoalueella Kainuun merkkipiirissä ja poronhoitoalueen ulkopuolisella alueella Kainuussa 2002-2003—vertaileva tutkimus aluetasolla. Metsäntutkimuslaitoksen tiedonantoja 930

  • Mattila E (2006) Porojen talvilaitumien kunto poronhoitoalueen etelä- ja keskiosien merkkipiireissä 2002–2004 ja kehitys 1970-luvun puolivälistä alkaen. Metsäntutkimuslaitoksen työraportteja/Working Papers of the Finnish Forest Research Institute 27

  • Michelsen A, Jonasson S, Sleep D, Havström M, Callaghan TV (1996) Shoot biomass, δ13C, nitrogen and chlorophyll responses of two arctic dwarf shrubs to in situ shading, nutrient application and warming simulating climatic change. Oecologia 105:1–12. doi:10.1007/BF00328785

    Google Scholar 

  • Moen J (2008) Climate change: effects on the ecological basis of reindeer husbandry in Sweden. Ambio 37:304–311. doi:10.1579/0044-7447(2008)37[304:CCEOTE]2.0.CO;2

    PubMed  Google Scholar 

  • Moen J, Aune K, Edenius L, Angerbjörn A (2004) Potential effects of climate change on tree line position in the Swedish mountains. Ecol Soc 9:16. http://www.ecologyandsociety.org/vol9/iss1/art16/

    Google Scholar 

  • Mysterud A, Langvatn R, Yoccoz NG, Stenseth NC (2001) Plant phenology, migration and geographical variation in body weight of a large herbivore: the effect of a variable topography. J Anim Ecol 70:915–923. doi:10.1046/j.0021-8790.2001.00559.x

    Google Scholar 

  • Neuvonen S, Niemelä P, Virtanen T (1999) Climatic change and insect outbreaks in boreal forests: the role of winter temperatures. Ecol Bull 47:63–67

    Google Scholar 

  • Niemelä P, Chapin FSIII, Danell K, Bryant JP (2001) Herbivory-mediated responses of selected boreal forests to climatic change. Clim Change 48:427–440. doi:10.1023/A:1010787714349

    Google Scholar 

  • Nieminen M, Heiskari U (1989) Diets of freely grazing and captive reindeer during summer and winter. Rangifer 9:17–34

    Google Scholar 

  • Nieminen M, Laitinen M (1983) Metsäpeuran palautusistutus ja stressi. Suomen Riista 30:34–43

    Google Scholar 

  • Nilssen A, Tenow O (1990) Diapause, embryo growth and supercooling capacity of Epirrita autumnata eggs from northern Fennoscandia. J Entomol Exp Appl 57:39–55. doi:10.1007/BF00349594

    Google Scholar 

  • Norberg H, Maijala V, Nieminen M (2001) Palatability and nutrient composition of plants, fungi and lichens foraged by reindeer. Abstracts of posters presented at the 11th Nordic conference on reindeer res, Kaamanen, Finland, 18–20 June 2001. Rangifer Report 5

  • Nybakken L, Julkunen-Tiitto R (2006) UV-B induces usnic acid in reindeer lichens. Lichenol 38:477–485. doi:10.1017/S0024282906005883

    Google Scholar 

  • Nybakken L, Solhaug KA, Bilger W, Gauslaa Y (2004) The lichens Xanthoria elegans and Cetraria islandica maintain a high protection against UV-B radiation in Arctic habitats. Oecologia 140:211–216. doi:10.1007/s00442-004-1583-6

    PubMed  Google Scholar 

  • Oksanen E, Riikonen J, Kaakinen S, Holopainen T, Vapaavuori E (2005) Structural characteristics and chemical composition of birch (Betula pendula) leaves are modified by increasing CO2 and ozone. Glob Change Biol 11:732–748. doi:10.1111/j.1365-2486.2005.00938.x

    Google Scholar 

  • Owens FN (1988) Protein metabolism in ruminant animals. In: Church DC (ed) The ruminant animal. Digestive physiology and nutrition. Prentice-Hall, Englewood Cliffs, pp 227–249

    Google Scholar 

  • Palo RT (1984) Distribution of birch (Betula spp.), willow (Salix spp.), and poplar (Populus spp.) secondary metabolites and their potential role as chemical defense against herbivores. J Chem Ecol 10:499–520. doi:10.1007/BF00988096

    CAS  Google Scholar 

  • Palo RT (1993) Usnic acid, a secondary metabolite of lichens and its effects on in vitro digestibility in reindeer. Rangifer 13:39–43

    Google Scholar 

  • Pancotto VA, Sala OE, Cabello M, Lopez NI, Robson TM, Ballare CL, Caldwell MM, Scopel AL (2003) Solar UV-B decreases decomposition in herbaceous plant litter in Tierra del Fuego, Argentina: potential role of an altered decomposer community. Glob Change Biol 9:1465–1474. doi:10.1046/j.1365-2486.2003.00667.x

    Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. doi:10.1038/nature01286

    PubMed  CAS  Google Scholar 

  • Peltonen PA, Vapaavuori E, Julkunen-Tiitto R (2005) Accumulation of phenolic compounds in birch leaves is changed by elevated carbon dioxide and ozone. Glob Change Biol 11:1305–1324. doi:10.1111/j.1365-2486.2005.00979.x

    Google Scholar 

  • Perez-Maldonado RA, Norton BW, Kerven GL (1995) Factors affecting in vitro formation of tannin-protein complexes. J Sci Food Agric 69:291–298. doi:10.1002/jsfa.2740690305

    CAS  Google Scholar 

  • Persson SJ, White RG, Luick JR (1980) Determination of nutritive value of reindeer-caribou range. In: Reimers E, Gaare E, Skjenneberg S (eds) In: Proceedings of second interantional reindeer/Caribou symposium, Direktoratet for vilt og ferskvannsfisk, Trondheim, pp 224–239

  • Phoenix GK, Gwynn-Jones D, Lee JA, Callaghan TV (2000) The impacts of UV-B radiation on the regeneration of a sub-arctic heath community. Plant Ecol 146:67–75. doi:10.1023/A:1009839506658

    Google Scholar 

  • Post E, Forschhammer MC (2008) Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Philos Trans R Soc B 363:2369–2375. doi:10.1098/rstb.2007.2207

    Google Scholar 

  • Post E, Stenseth NC (1999) Climatic variability, plant phenology, and northern ungulates. Ecol 80:1322–1339

    Article  Google Scholar 

  • Press MC, Potter JA, Burke MJW, Callaghan TV, Lee JA (1998) Responses of a subarctic dwarf shrub heath community to simulated environmental change. J Ecol 86:315–327. doi:10.1046/j.1365-2745.1998.00261.x

    Google Scholar 

  • Provenza FD (1995) Postingestive feedback as an elementary determinant of food preference and intake in ruminants. J Range Manage 48:2–17. doi:10.2307/4002498

    Google Scholar 

  • Putkonen J, Roe G (2003) Rain-on-snow events impact soil temperatures and affect ungulate survival. Geophys Res Lett 30:1188. doi:10.1029/2002GL016326

    Google Scholar 

  • Rakitina ZG (1965) The permeability of ice for O2 and CO2 in connection with a study of the reasons for winter cereal mortality under ice crust. Sov Plant Physiol 12:795–803

    Google Scholar 

  • Rees WG, Williams M, Vitebsky P (2003) Mapping land cover change in a reindeer herding area of the Russian Arctic using Landsat TM and ETM + imagery and indigenous knowledge. Remote Sens Environ 85:441–452. doi:10.1016/S0034-4257(03)00037-3

    Google Scholar 

  • Rees WG, Stammler FM, Danks FS, Vitebsky P (2008) Vulnerability of European reindeer husbandry to global change. Clim Change. doi:10.1007/s10584-007-9345

  • Reindeer Herders’ Association (2009) Annual statistics of reindeer numbers for the period 1959–2007. Rovaniemi, Finland

  • Rey A, Jarvis PG (1998) Long-term photosynthetic acclimation to increased atmospheric CO2 concentration in young birch (Betula pendula) trees. Tree Physiol 18:441–450

    PubMed  CAS  Google Scholar 

  • Richardson SJ, Press MC, Parsons AN, Hartley SE (2002) How do nutrients and warming impact on plant communities and their insect herbivores? A 9-year study from a sub-Arctic heath. J Ecol 90:544–556. doi:10.1046/j.1365-2745.2002.00681.x

    Google Scholar 

  • Riikonen J, Holopainen T, Oksanen E, Vapaavuori E (2005) Leaf photosynthetic characteristics of silver birch during three years of exposure to elevated concentrations of CO2 and O3 in the field. Tree Physiol 25:621–632

    PubMed  CAS  Google Scholar 

  • Riipi M, Ossipov V, Lempa K, Haukioja E, Koricheva J, Ossipova S, Pihlaja K (2002) Seasonal changes in birch leaf chemistry: are there trade-offs between leaf growth and accumulation of phenolics? Oecologia 130:380–390. doi:10.1007/s00442-001-0826-z

    Google Scholar 

  • Rinnan R, Nerg A-M, Ahtoniemi P, Suokanerva H, Holopainen T, Kyrö E, Bååth E (2008) Plant-mediated effects of elevated ultraviolet-B radiation on peat microbial communities of a subarctic mire. Glob Change Biol. doi:10.1111/j.1365-2486.2008.01544

  • Roach JAG, Musser SM, Morehouse K, Woo JYJ (2006) Determination of usnic acid in lichen toxic to elk by liquid chromatography with ultraviolet and tandem mass spectrometry detection. J Agric Food Chem 54:2484–2490. doi:10.1021/jf052767m

    PubMed  CAS  Google Scholar 

  • Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J (2001) Meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562. doi:10.1007/s004420000544

    Google Scholar 

  • Sandström P, Granqvist Pahlén T, Edenius L, Tømmervik H, Hagner O, Hemberg L, Olsson H, Baer K, Stenlund T, Brandt LG, Egberth M (2003) Conflict resolution by participatory management: remote sensing and GIS as tools for communicating land-use needs for reindeer herding in northern Sweden. Ambio 32:557–567. doi:10.1639/0044-7447(2003)032[0557:CRBPMR]2.0.CO;2

    PubMed  Google Scholar 

  • Scott CB, Provenza FD, Banner RE (1995) Dietary habits and social interactions affect choice of feeding location by sheep. Appl Anim Behav Sci 45:225–237. doi:10.1016/0168-1591(95)00605-R

    Google Scholar 

  • Searles PS, Flint SD, Caldwell MM (2001) A meta-analysis of plant field studies simulating stratospheric ozone depletion. Oecologia 127:1–10. doi:10.1007/s004420000592

    Google Scholar 

  • Semerdjieva SI, Sheffield E, Phoenix GK, Gwynn-Jones D, Callaghan TV, Johnson GN (2003) Contrasting strategies for UV-B screening in sub-Arctic dwarf shrubs. Plant Cell Environ 26:957–964. doi:10.1046/j.1365-3040.2003.01029.x

    PubMed  Google Scholar 

  • Skogland T (1980) Comparative summer feeding strategies of arctic and alpine Rangifer. J Anim Ecol 49:81–98. doi:10.2307/4278

    Google Scholar 

  • Solberg EJ, Jordhøy P, Strand O, Aanes R, Loison A, Sæther B-E, Linnell JDC (2001) Effects of density-dependence and climate on the dynamics of a Svalbard reindeer population. Ecography 24:441–451. doi:10.1034/j.1600-0587.2001.d01-200.x

    Google Scholar 

  • Soppela P (2008) The energetic aspects of migration in northern ungulates, the caribou and reindeer (Rangifer tarandus). In: Morris S, Vosloo A (eds) In: Proceedings of the fourth CPB meeting in Africa: Mara 2008. Medimond Publishing Co, Bologna, Italy, pp 533–550

  • Soppela P, Turunen M, Forbes B, Aikio P, Magga H, Sutinen M-L, Lakkala K, Uhlig C (2006) The chemical response of reindeer summer pasture plants in a subarctic peatland to ultraviolet (UV) radiation. In: Forbes BC, Bölter M, Müller-Wille L, Hukkinen J, Konstantinov Y (eds) Reindeer management in northernmost Europe. Linking practical and scientific knowledge in social-ecological systems. Ecological studies, vol 184. Springer, Berlin, pp 199–213

  • Soppela P, Saarela S, Heiskari U, Nieminen M (2008) The effects of wintertime undernutrition on plasma leptin and insulin levels in an Arctic ruminant, the reindeer. Comp Biochem Physiol B Biochem Mol Biol 149:613–621. doi:10.1016/j.cbpb.2007.12.008

    PubMed  Google Scholar 

  • Staaland H, Nieminen M (1993) World reindeer herding: origin, history, distribution, economy. In: Proceedings of the VII world conference on animal production, vol 1. Edmonton, Alberta, June 28–July 2, pp 161203

  • Staaland H, Sæbø S (1993) Forage diversity and nutrient supply of reindeer. Rangifer 13:169–177

    Google Scholar 

  • Stark S, Julkunen-Tiitto R, Kumpula J (2007) Ecological role of reindeer summer browsing in the mountain birch (Betula pubescens ssp. czerepanovii) forests: effects on plant defense, litter decomposition, and soil nutrient cycling. Oecologia 151:486–498. doi:10.1007/s00442-006-0593-y

    PubMed  Google Scholar 

  • Stiling P, Cornelissen T (2007) How does elevated carbon dioxide (CO2) affect plant–herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Glob Change Biol 13:1823–1842. doi:10.1111/j.1365-2486.2007.01392.x

    Google Scholar 

  • Storeheier PV, Mathiesen SD, Tyler NJC, Olsen MA (2002a) Nutritive value of terricolous lichens for reindeer in winter. Lichenologist 34:247–257. doi:10.1006/lich.2002.0394

    Google Scholar 

  • Storeheier PV, Mathiesen SD, Tyler NJC, Schjelderup I, Olsen MA (2002b) Utilization of nitrogen- and mineral-rich vascular forage plants by reindeer in winter. J Agric Sci 139:151–160. doi:10.1017/S0021859602002344

    Google Scholar 

  • Stow DA, Hope A, McGuire D, Verbyla D, Gamon J, Huemmrich F, Houston S, Racine C, Sturm M, Tape K, Hinzman L, Yoshikawa K, Tweedie C, Noyle B, Silapaswan C, Douglas D, Griffith B, Jia G, Epsteino H, Walkerp D, Daeschnera S, Petersen A, Zhou L, Myneni R (2004) Remote sensing of vegetation and land-cover change in arctic tundra ecosystems. Remote Sens Environ 89:281–308. doi:10.1016/j.rse.2003.10.018

    Google Scholar 

  • Sundset MA, Præsteng KE, Cann IKO, Mathiesen SD, Mackie RI (2007) Novel rumen bacterial diversity in two geographically separated sub-species of reindeer. Microb Ecol 54:424–438. doi:10.1007/s00248-007-9254-x

    PubMed  Google Scholar 

  • Sundset MA, Kohn A, Mathiesen SD, Praesteng KE (2008) Eubacterium rangiferina, a novel usnic acid-resistant bacterium from the reindeer rumen. Naturwissenschaften 95:741–749. doi:10.1007/s00114-008-0381-0

    PubMed  CAS  Google Scholar 

  • Sundset MA, Edwards JE, Cheng YF, Senosiain RS, Fraile MN, Northwood KS, Præsteng KE, Glad R, Mathiesen SD, Wright ADG (2009) Molecular diversity of the rumen microbiome of Norwegian reindeer on natural summer pasture. Microb Ecol 57:335–348. doi:10.1007/s00248-008-9414-7

    PubMed  CAS  Google Scholar 

  • Taalas P, Kaurola J, Kylling A, Shindell D, Sausen R, Dametis M, Grewe V, Herman J, Damski J, Steil B (2000) The impact of greenhouse gases and halogenated species on future solar UV radiation doses. Geophys Res Lett 27:1127–1130. doi:10.1029/1999GL010886

    CAS  Google Scholar 

  • Taalas P, Kaurola J, Lindfors A (2002) Long-term ozone and UV estimates. In: Käyhkö J, Talve L (eds) Understanding the global system—the Finnish perspective. Finnish Global Change Programme FIGARE, University of Turku, pp 137–145

  • Tegelberg R, Julkunen-Tiitto R (2001) Quantitative changes in secondary metabolites of dark-leaved willow (Salix myrsinifolia) exposed to enhanced ultraviolet-B radiation. Physiol Plant 113:541–547. doi:10.1034/j.1399-3054.2001.1130413.x

    CAS  Google Scholar 

  • Tegelberg R, Julkunen-Tiitto R, Aphalo PJ (2001) The effects of long-term elevated UV-B on the growth and phenolics of field-grown silver birch (Betula pendula). Glob Change Biol 7:839–848. doi:10.1046/j.1354-1013.2001.00453.x

    Google Scholar 

  • Tegelberg R, Veteli T, Aphalo PJ, Julkunen-Tiitto R (2003) Clonal differences in growth and phenolics of willows exposed to elevated ultraviolet-B radiation. Basic Appl Ecol 4:219–228. doi:10.1078/1439-1791-00150

    CAS  Google Scholar 

  • Tegelberg R, Julkunen-Tiitto R, Vartiainen M, Paunonen R, Rousi M, Kellomäki S (2008) Exposures to elevated CO2, elevated temperature and enhanced UV-B radiation modify activities of polyphenol oxidase and guaiacol peroxidase and concentrations of chlorophylls, polyamines and soluble proteins in the leaves of Betula pendula seedlings. Environ Exp Bot 62:308–315. doi:10.1016/j.envexpbot.2007.10.003

    CAS  Google Scholar 

  • Tews J, Ferguson MAD, Fahrig L (2007) Potential net effects of climate change on high Arctic Peary caribou: lessons from a spatially explicit simulation model. Ecol Modell 207:85–98. doi:10.1016/j.ecolmodel.2007.04.011

    Google Scholar 

  • Tikkanen E, Niemelä I (1995) Kola peninsula pollutants and forest ecosystems in Lapland. Finnish Ministry of Agriculture and Forestry, The Finnish Forest Research Institute, Finland

  • Tissue DT, Oechel WC (1987) Physiological response of Eriophorum vaginatum to elevated CO2 and temperature in the Alaskan tussock tundra. Ecology 68:401–410. doi:10.2307/1939271

    Google Scholar 

  • Tømmervik H, Johansen BE, Pedersen JP (1995) Monitoring the effects of air pollution on terrestrial ecosystems in Varanger (Norway) and Nikel-Pechenga (Russia) using remote sensing. Sci Total Environ 160–161:753–767. doi:10.1016/0048-9697(95)04409-T

    Google Scholar 

  • Tømmervik H, Høgda K-A, Riseth JÅ, Karlsen S-R, Wielgolaski FE (2004a) Endringer i vekstsesongen i Fennoskandia og Kola i perioden 1982–1999 og betydning for reindriften. Rangifer Rep 10:89–98

    Google Scholar 

  • Tømmervik H, Johansen B, Tombre I, Thannheiser D, Høgda KA, Gaare E, Wielgolaski FE (2004b) Vegetation changes in the Nordic mountain birch forest: the influence of grazing and climate change. Arct Antarct Alp Res 36:323–332. doi:10.1657/1523-0430(2004)036[0323:VCITNM]2.0.CO;2

    Google Scholar 

  • Turunen M, Latola K (2005) UV-B radiation and acclimation in timberline plants. Environ Pollut 137:390–403. doi:10.1016/j.envpol.2005.01.030

    PubMed  CAS  Google Scholar 

  • Turunen M, Sutinen M-L, Derome K, Norokorpi Y, Lakkala K (2002) Effects of solar UV radiation on birch and pine seedlings in the subarctic. Polar Rec (Gr Brit) 38:233–240

    Article  Google Scholar 

  • Tyler NJC, Turi JM, Sundset MA, Strøm Bull K, Sara MN, Reinert E, Oskal N, Nellemann C, McCarthy JJ, Mathiesen SD, Martello ML, Magga OH, Hovelsrud GK, Hanssen-Bauer I, Eira NI, Eira IMG, Corell RW (2007) Saami reindeer pastoralism under climate change: applying a generalized framework for vulnerability studies to a sub-arctic social–ecological system. Glob Environ Change 17:191–206. doi:10.1016/j.gloenvcha.2006.06.001

    Google Scholar 

  • Tyler NJC, Forschhammer MC, Øritsland NA (2008) Nonlinear effects of climate and density in the dynamics of a fluctuating population of reindeer. Ecology 89:1675–1686. doi:10.1890/07-0416.1

    PubMed  Google Scholar 

  • van der Wal R, Madan N, van Lieshout S, Dormann C, Langvatn R, Albon SD (2000) Trading forage quality for quantity? Plant phenology and patch choice by Svalbard reindeer. Oecologia 123:108–115. doi:10.1007/s004420050995

    Google Scholar 

  • van Wijk MT, Clemmensen KE, Shaver GR, Williams M, Callaghan TV, Chapin FS III, Cornelissen JHC, Gough L, Hobbie SE, Jonasson S, Lee JA, Michelsen A, Press MC, Richardson SJ, Rueth H (2004) Long-term ecosystem level experiments at Toolik Lake, Alaska, and at Abisko, Northern Sweden: generalizations and differences in ecosystem and plant type responses to global change. Glob Change Biol 10:105–123. doi:10.1111/j.1365-2486.2003.00719.x

    Google Scholar 

  • Veteli TO, Kuokkanen K, Julkunen-Tiitto R, Roininen H, Tahvanainen J (2002) Effects of elevates CO2 and temperature on plant growth and herbivore defensive chemistry. Glob Change Biol 8:1240–1252. doi:10.1046/j.1365-2486.2002.00553.x

    Google Scholar 

  • Villalba JJ, Provenza FD (1997) Preference for flavoured wheat straw by lambs conditioned with intraruminal administrations of acetate and propionate. J Anim Sci 75:2905–2914

    PubMed  CAS  Google Scholar 

  • Virtanen T, Neuvonen S, Nikula A (1998) Modelling topoclimatic patterns of egg mortality of Epirrita autumnata (Lepidoptera: Geometridae) with a geographical information system: predictions for current climate and warmer climate scenarios. J Appl Ecol 35:311–322. doi:10.1046/j.1365-2664.1998.00299.x

    Google Scholar 

  • Virtanen R, Eskelinen A, Gaare E (2003) Long-term changes in alpine plant communities in Norway and Finland. In: Nagy L, Grabherr GC, Körner C, Thompso DBA (eds) Alpine biodiversity in Europe. Ecol Studies 167:411–422. Springer, Berlin

  • Vistnes II (2008) Impacts of human development and activity on reindeer and caribou habitat use. Dissertation, Norwegian University of Life Sciences

  • Wahren C-HA, Walker MD, Bret-Harte MS (2005) Vegetation responses in Alaskan arctic tundra after 8 years of a summer warming and winter snow manipulation experiment. Glob Change Biol 11:537–552. doi:10.1111/j.1365-2486.2005.00927.x

    Google Scholar 

  • Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jónsdóttir IS, Klein JA, Magnússon B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland Ø, Turner PL, Tweedie CE, Webber PJ, Wookey PA (2006) Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci USA 103:1342–1346. doi:10.1073/pnas.0503198103

    PubMed  CAS  Google Scholar 

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395. doi:10.1038/416389a

    PubMed  CAS  Google Scholar 

  • Wang Y-P, Rey A, Jarvis PG (1998) Carbon balance of young birch trees grown in ambient and elevated atmospheric CO2 concentrations. Glob Change Biol 4:797–807. doi:10.1046/j.1365-2486.1998.00170.x

    Google Scholar 

  • Wang T, Bengtsson G, Kärnefeltd I, Björn L-O (2001) Provitamins and vitamins D2 and D3 in Cladina spp over a latitudinal gradient: possible correlation with UV levels. J Photochem Photobiol B Biol 62:118–122. doi:10.1016/S1011-1344(01)00160-9

    CAS  Google Scholar 

  • Warenberg K, Danell O, Gaare E, Nieminen M (1997) Porolaidunten kasvillisuus. Landbruksforlaget (Nordic Council for Reindeer Research), Tromsø, Norway

  • Warren JM, Bassman JH, Fellman JK, Mattinson DS, Eigenbrode S (2003) Ultraviolet-B radiation alters phenolic salicylate and flavonoid composition of Populus trichocarpa leaves. Tree Physiol 23:527–535

    PubMed  CAS  Google Scholar 

  • Weatherhead B, Tanskanen A, Stevermer A (2005) Ozone and ultraviolet radiation. In: Symon C, Arris L, Heal B (eds) Arctic climate impact assessment (ACIA) scientific report. Cambridge University Press, New York, pp 151–182

    Google Scholar 

  • Weih M, Karlsson PS (1999) Growth response of altitudinal ecotypes of mountain birch to temperature and fertilisation. Oecologia 119:16–23. doi:10.1007/s004420050756

    Google Scholar 

  • Weih M, Karlsson PS (2001) Growth response of mountain birch to air and soil temperature: is increasing leaf-nitrogen content an acclimation to lower air temperature? New Phytol 150:147–155. doi:10.1046/j.1469-8137.2001.00078.x

    Google Scholar 

  • Weladji RB, Holand Ø (2003) Global climate change and reindeer: effects of winter weather on the autumn weight and growth of calves. Oecol 136:317–323. doi:10.1007/s00442-003-1257-9

    Google Scholar 

  • Weladji RB, Holand Ø (2006) Influences of large-scale climatic variability on reindeer population dynamics: implications for reindeer husbandry in Norway. Clim Res 32:119–127. doi:10.3354/cr032119

    Google Scholar 

  • Weladji RB, Klein DR, Holand Ø, Mysterud A (2002) Comparative response of Rangifer tarandus and other northern ungulates to climatic variability. Rangifer 22:33–50

    Google Scholar 

  • Wielgolaski FE (2005) Plant ecology, herbivory, and human impact in Nordic mountain birch forests. Ecol Studies 180. Springer, Berlin

    Google Scholar 

Download references

Acknowledgments

We thank the Arctic Research Centre of the Finnish Meteorological Institute in Sodankylä, Finland for providing meteorological data, and the Reindeer Herders’ Association in Rovaniemi, Finland for the annual statistics concerning reindeer numbers. The authors are grateful for the comments on the earlier draft given by our colleagues and the reviewers of Polar Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minna Turunen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turunen, M., Soppela, P., Kinnunen, H. et al. Does climate change influence the availability and quality of reindeer forage plants?. Polar Biol 32, 813–832 (2009). https://doi.org/10.1007/s00300-009-0609-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-009-0609-2

Keywords

Navigation