Skip to main content
Log in

Regulation of small RNA-mediated high temperature stress responses in crop plants

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Small RNAs have emerged as key players of gene expression regulation. Several lines of evidences highlight their role in modulating high temperature stress responsiveness in plants.

Abstract

Throughout their life cycle, plants have to regulate their gene expression at various developmental phases, physiological changes, and in response to biotic or environmental stress. High temperature is one the most common abiotic stress for crop plants, that results in impaired morphology, physiology, and yield. However, plants have certain mechanisms that enable them to withstand such conditions by modulating the expression of stress-related genes. Small RNA (sRNA)-regulated gene expression is one such mechanism which is ubiquitous in all eukaryotes. The sRNAs mainly include micro RNAs (miRNAs) and small interfering RNAs (siRNAs). They are primarily associated with the gene silencing either through translation inhibition, mRNA degradation, or DNA methylation. During high temperature stress the increased or decreased level of miRNAs altered the protein accumulation of target transcripts and, therefore, regulate stress responses. Several reports are available in plants which are genetically engineered through expressing artificial miRNAs resulted in thermotolerance. sRNAs have also been reported to bring the epigenetic changes on chromatin region through RNA-dependent DNA methylation (RdDM). The present article draws a brief illustration of sRNA origin, their functional mechanisms, role in high temperature stress, and possible application for developing stress tolerant crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2

Similar content being viewed by others

References

  • Axtell MJ (2013) Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64:137–159

    CAS  PubMed  Google Scholar 

  • Axtell MJ, Jan C, Rajagopalan R, Bartel DP (2006) A two-hit trigger for siRNA biogenesis in plants. Cell 127:565–577

    CAS  PubMed  Google Scholar 

  • Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA 102:11928–11933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bilichak A, Ilnytskyy Y, Woycicki R et al (2015) The elucidation of stress memory inheritance in Brassica rapa plants. Front Plant Sci 6:5

    PubMed  PubMed Central  Google Scholar 

  • Blevins T, Podicheti R, Mishra V et al (2015) Identification of pol IV and RDR2-dependent precursors of 24 nt siRNAs guiding de novo DNA methylation in arabidopsis. Elife 4:e09591

    PubMed  PubMed Central  Google Scholar 

  • Bologna NG, Voinnet O (2014) The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol 65:473–503

    CAS  PubMed  Google Scholar 

  • Carbonell A, Daròs JA (2019) Design, synthesis, and functional analysis of highly specific artificial small RNAs with antiviral activity in plants. Methods Mol Biol 2028:231–246

    CAS  PubMed  Google Scholar 

  • Carbonell A, Takeda A, Fahlgren N et al (2014) New generation of artificial microRNA and synthetic trans-acting small interfering RNA vectors for efficient gene silencing in Arabidopsis. Plant Physiol 165:15–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carbonell A, Lisón P, Daròs JA (2019) Multi-targeting of viral RNAs with synthetic trans-acting small interfering RNAs enhances plant antiviral resistance. Plant J 100:720–737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cisneros AE, Carbonell A (2020) Artificial small RNA-based silencing tools for antiviral resistance in plants. Plants 9:669

    CAS  PubMed Central  Google Scholar 

  • de Felippes FF, Marchais A, Sarazin A et al (2017) A single miR390 targeting event is sufficient for triggering TAS3-tasiRNA biogenesis in Arabidopsis. Nucleic Acids Res 45:5539–5554

    PubMed  PubMed Central  Google Scholar 

  • de Jongh RPH, van Dijk ADJ, Julsing MK et al (2020) Designing eukaryotic gene expression regulation using machine learning. Trends Biotechnol 38:191–201

    PubMed  Google Scholar 

  • Ding Y, Ma Y, Liu N et al (2017) microRNAs involved in auxin signalling modulate male sterility under high-temperature stress in cotton (Gossypium hirsutum). Plant J 91:977–994

    CAS  PubMed  Google Scholar 

  • Fujimori S, Hasegawa T, Krey V et al (2019) A multi-model assessment of food security implications of climate change mitigation. Nat Sustain 2:386–396

    Google Scholar 

  • Giacomelli JI, Weigel D, Chan RL, Manavella PA (2012) Role of recently evolved miRNA regulation of sunflower HaWRKY6 in response to temperature damage. New Phytol 195:766–773

    CAS  PubMed  Google Scholar 

  • Gottlieb Y, Zchori-Fein E, Mozes-Daube N et al (2010) The transmission efficiency of tomato yellow leaf curl virus by the whitefly Bemisia tabaci is correlated with the presence of a specific symbiotic bacterium species. J Virol 84:9310–9317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guan Q, Lu X, Zeng H et al (2013) Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J 8:e24952

    Google Scholar 

  • Hajheidari M, Farrona S, Huettel B et al (2012) CDKF;1 and CDKD protein kinases regulate phosphorylation of serine residues in the C-Terminal domain of Arabidopsis RNA polymerase II. Plant Cell 24:1626–1642

    CAS  PubMed  PubMed Central  Google Scholar 

  • Halford NG, Curtis TY, Chen Z, Huang J (2015) Effects of abiotic stress and crop management on cereal grain composition: implications for food quality and safety. J Exp Bot 66:1145–1156

    CAS  PubMed  Google Scholar 

  • Iborra FJ, Jackson DA, Cook PR (2001) Coupled transcription and translation within nuclei of mammalian cells. Science 293:1139–1142

    CAS  PubMed  Google Scholar 

  • Kim YJ, Zheng B, Yu Y et al (2011) The role of Mediator in small and long noncoding RNA production in Arabidopsis thaliana. EMBO J 30:814–822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kushawaha AK, Khan A, Sopory SK, Sanan-Mishra N (2021) Priming by high temperature stress induces microRNA regulated heat shock modules indicating their involvement in thermopriming response in rice. Life (basel) 11:291

    CAS  Google Scholar 

  • Lai YS, Zhang X, Zhang W, Shen D, Wang H, Xia Y, Qiu Y, Song J, Wang C, Li X (2017) The association of changes in DNA methylation with temperature-dependent sex determination in cucumber. J Exp Bot 68:2899–2912

    CAS  PubMed  Google Scholar 

  • Li S, Liu J, Liu Z et al (2014) HEAT-INDUCED TAS1 TARGET1 mediates thermotolerance via heat stress transcription factor A1a-directed pathways in arabidopsis. Plant Cell 26:764–1780

    Google Scholar 

  • Li H, Wang Y, Wang Z et al (2016) Microarray and genetic analysis reveals that csa-miR159b plays a critical role in abscisic acid-mediated heat tolerance in grafted cucumber plants. Plant Cell Environ 39:1790–1804

    CAS  PubMed  Google Scholar 

  • Li Y, Li X, Yang J, He Y (2020) Natural antisense transcripts of MIR398 genes suppress microR398 processing and attenuate plant thermotolerance. Nat Commun 11:5351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin JS, Kuo CC, Yang IC et al (2018) MicroRNA160 modulates plant development and heat shock protein gene expression to mediate heat tolerance in Arabidopsis. Front Plant Sci 9:68

    PubMed  PubMed Central  Google Scholar 

  • Liu J, He Z (2020) Small DNA methylation, big player in plant abiotic stress responses and memory. Front Plant Sci 11:e595603

    Google Scholar 

  • Liu J, Feng L, Li J, He Z (2015) Genetic and epigenetic control of plant heat responses. Front Plant Sci 6:267

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Teng C, Xia R, Meyers BC (2020) PhasiRNAs in plants: their Biogenesis, genic sources, and roles in stress responses, development, and reproduction. Plant Cell 32:3059–3080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malabarba J, Windels D, Xu W, Verdier J (2021) Regulation of DNA (de)methylation positively impacts seed germination during seed development under heat stress. Gene 12:457

    CAS  Google Scholar 

  • Mao Y, Xu J, Wang Q et al (2021) A natural antisense transcript acts as a negative regulator for the maize drought stress response gene ZmNAC48. J Exp Bot 72:2790–2806

    CAS  PubMed  Google Scholar 

  • Matthews C, Arshad M, Hannoufa A (2019) Alfalfa response to heat stress is modulated by microRNA156. Physiol Plant 165:830–842

    CAS  PubMed  Google Scholar 

  • Matzke MA, Mosher RA (2014) RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 15:394–408

    CAS  PubMed  Google Scholar 

  • Naydenov M, Baev V, Apostolova E et al (2015) High-temperature effect on genes engaged in DNA methylation and affected by DNA methylation in Arabidopsis. Plant Physiol Biochem 87:102–108

    CAS  PubMed  Google Scholar 

  • Papareddy RK, Páldi K, Paulraj S, Kao P, Lutzmayer S, Nodine MD (2020) Chromatin regulates expression of small RNAs to help maintain transposon methylome homeostasis in Arabidopsis. Genome Biol 21:251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel P, Yadav K, Srivastava AK et al (2019) Overexpression of native Musa-miR397 enhances plant biomass without compromising abiotic stress tolerance in banana. Sci Rep 9:e16434

    Google Scholar 

  • Popova OV, Dinh HQ, Aufsatz W, Jonak C (2013) The RdDM pathway is required for basal heat tolerance in arabidopsis. Mol Plant 6:396–410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad A, Sharma N, Muthamilarasan M et al (2019) Recent advances in small RNA mediated plant-virus interactions. Crit Rev Biotechnol 39:587–601

    CAS  PubMed  Google Scholar 

  • Prasad A, Sharma N, Prasad M (2020) Noncoding but CODING: Pri-miRNA into the action. Trends Plant Sci 26:204–206

    PubMed  Google Scholar 

  • Ravichandran S, Ragupathy R, Edwards T, Domaratzki M, Cloutier S (2019) MicroRNA-guided regulation of heat stress response in wheat. BMC Genomics 20:488

    PubMed  PubMed Central  Google Scholar 

  • Sharma N, Prasad M (2020) Silencing AC1 of Tomato leaf curl virus using artificial microRNA confers resistance to leaf curl disease in transgenic tomato. Plant Cell Rep 39:1565–1579

    CAS  PubMed  Google Scholar 

  • Shi X, Jiang F, Wen J, Wu Z (2019) Overexpression of Solanum habrochaites microRNA319d (sha-miR319d) confers chilling and heat stress tolerance in tomato (S. lycopersicum). BMC Plant Biol 19:214

    PubMed  PubMed Central  Google Scholar 

  • Singh RK, Prasad M (2021) Delineating the epigenetic regulation of heat and drought response in plants. Crit Rev Biotechnol. https://doi.org/10.1080/07388551.2021.1946004

    Article  PubMed  Google Scholar 

  • Singh A, Gautam V, Singh S et al (2018) Plant small RNAs: advancement in the understanding of biogenesis and role in plant development. Planta 248:545–558

    CAS  PubMed  Google Scholar 

  • Singh RK, Prasad A, Muthamilarasan M, Parida SK, Prasad M (2020) Breeding and biotechnological interventions for trait improvement: status and prospects. Planta 252:54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stief A, Altmann S, Hoffmann K et al (2014) Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell 26:1792–1807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szaker HM, Darkó É, Medzihradszky A et al (2019) miR824/AGAMOUS-LIKE16 module integrates recurring environmental heat stress changes to fine-tune poststress development. Front Plant Sci 10:1454

    PubMed  PubMed Central  Google Scholar 

  • Varkonyi-Gasic E, Wu R, Wood M et al (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:1–12

    Google Scholar 

  • Vazquez F, Gasciolli V, Crété P, Vaucheret H (2004) The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr Biol 14:346–351

    CAS  PubMed  Google Scholar 

  • Wang F, Axtell MJ (2017) AGO4 is specifically required for heterochromatic siRNA accumulation at Pol V-dependent loci in Arabidopsis thaliana. Plant J 90:37–47

    CAS  PubMed  Google Scholar 

  • Wang XJ, Gaasterland T, Chua NH (2005) Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana. Genome Biol 6:R30

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Sun F, Cao H et al (2012) TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response. PLoS ONE 7:e48445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Gu Y, Jia X et al (2012) Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis. Plant Cell 24:415–427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Liu Z, Lu F et al (2006) SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J 47:841–850

    CAS  PubMed  Google Scholar 

  • Yu B, Yang Z, Li J et al (2005) Methylation as a crucial step in plant microRNA biogenesis. Science 307:932–935

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu R, Jih G, Iglesias N, Moazed D (2014) Determinants of heterochromatic siRNA biogenesis and function. Mol Cell 53:262–276

    CAS  PubMed  Google Scholar 

  • Yuan C, Wang J, Harrison AP et al (2014) Genome-wide view of natural antisense transcripts in Arabidopsis thaliana. DNA Res 22:233–243

    Google Scholar 

  • Zhang X, Lii Y, Wu Z et al (2013) Mechanisms of small RNA generation from Cis-NATs in response to environmental and developmental cues. Mol Plant 6:704–715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Yuan S, Zhou M et al (2019) Transgenic creeping bentgrass overexpressing Osa-miR393a exhibits altered plant development and improved multiple stress tolerance. Plant Biotechnol J 17:233–251

    CAS  PubMed  Google Scholar 

  • Zhao Y, Xie J, Wang S et al (2021) Synonymous mutation of miR396a target sites in Growth Regulating Factor 15 (GRF15) enhances photosynthetic efficiency and heat tolerance in poplar. J Exp Bot. https://doi.org/10.1093/jxb/erab120

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors’ work in this area is supported by J.C. Bose National Fellowship Grant of Department of Science and Technology [JCB/2018/000001] and core grant of DBT-NIPGR. RKS acknowledges the DBT Multi-institutional project entitled—“Germplasm Characterization and Trait Discovery in Wheat using Genomics Approaches and its Integration for Improving Climate Resilience, Productivity and Nutritional quality" under mission programme of "Characterisation of Genetic Resources”, [BT/Ag/Network/Wheat/2019-20] for the research grant. AP and JM acknowledge the research fellowship from Council of Scientific and Industrial Research, Govt. of India. The authors are thankful to DBT-eLibrary Consortium (DeLCON) for providing access to e-resources.

Author information

Authors and Affiliations

Authors

Contributions

MP conceived the idea and outlined the review. RKS, AP, and JM prepared the manuscript.

Corresponding author

Correspondence to Manoj Prasad.

Ethics declarations

Conflict of interest

No conflict of interest declared.

Additional information

Communicated by Vijay Pratap Singh.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R.K., Prasad, A., Maurya, J. et al. Regulation of small RNA-mediated high temperature stress responses in crop plants. Plant Cell Rep 41, 765–773 (2022). https://doi.org/10.1007/s00299-021-02745-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-021-02745-x

Keywords

Navigation