Skip to main content
Log in

Genome-wide analysis of ARF transcription factors reveals HcARF5 expression profile associated with the biosynthesis of β-ocimene synthase in Hedychium coronarium

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Herein, 37 ARF genes were identified and analyzed in Hedychium coronarium and HcARF5 showed a potential role in the regulation of HcTPS3.

Abstract

Auxin is an important plant hormone, implicated in various aspects of plant growth and development processes especially in the biosynthesis of various secondary metabolites. Auxin response factors (ARF) belong to the transcription factors (TFs) gene family and play a crucial role in transcriptional activation/repression of auxin-responsive genes by directly binding to their promoter region. Nevertheless, whether ARF genes are involved in the regulatory mechanism of volatile compounds in flowering plants is largely unknown. β-ocimene is a key floral volatile compound synthesized by terpene synthase 3 (HcTPS3) in Hedychium coronarium. A comprehensive analysis of H. coronarium genome reveals 37 candidate ARF genes in the whole genome. Tissue-specific expression patterns of HcARFs family members were assessed using available transcriptome data. Among them, HcARF5 showed a higher expression level in flowers, and significantly correlated with the key structural β-ocimene synthesis gene (HcTPS3). Furthermore, transcript levels of both genes were associated with the flower development. Under hormone treatments, the response of HcARF5 and HcTPS3, and the emission level of β-ocimene contents were evaluated. Subcellular and transcriptional activity assay showed that HcARF5 localizes to the nucleus and possesses transcriptional activity. Yeast one-hybrid (Y1H) and dual-luciferase assays revealed that HcARF5 directly regulates the transcriptional activity of HcTPS3. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that HcARF5 interacts with scent-related HcIAA4, HcIAA6, and HcMYB1 in vivo. Overall, these results indicate that HcARF5 is potentially involved in the regulation of β-ocimene synthesis in H. coronarium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AbA:

Aureobasidin A

ABA:

Abscisic acid

Aux/IAA:

Auxin/Indole-3-Acetic Acid

cDNA:

Complementary DNA

GC–MS:

Gas chromatography-mass spectrometer

GFP:

Green fluorescent protein

DBD:

DNA-binding domain

ERE:

Ethylene responsive elements

MeJA:

Methyl jasmonate

qRT-PCR:

Quantitative reverse transcription PCR

MEME:

Multiple Em for Motif Elicitation

NJ:

Neighbor-Joining

ORF:

Open reading frame

PlantTFDB:

Plant Transcription Factor Database

RNA-seq:

RNA-sequencing

SMART:

Simple Modular Architecture Research Tool

TAIR:

The Arabidopsis Information Resource

ABRE:

ABA-responsive element

CDS:

Coding domain sequence

Ka:

Non-synonymous substitution rate

Ks:

Synonymous substitution rate

Mya:

Million years ago

References

  • Abbas F, Ke Y, Yu R, Fan Y (2019) Functional characterization and expression analysis of two terpene synthases involved in floral scent formation in Lilium ‘Siberia.’ Planta 249:71–93

    CAS  PubMed  Google Scholar 

  • Abbas F, Ke Y, Yu R, Yue Y, Amanullah S, Jahangir MM, Fan Y (2017) Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering. Planta 246:803–816

    CAS  PubMed  Google Scholar 

  • Abbas F, Ke Y, Zhou Y, Ashraf U, Li X, Yu Y, Yue Y, Ahmed KW, Yu R, Fan Y (2020a) Molecular cloning, characterization and expression analysis of LoTPS2 and LoTPS4 involved in floral scent formation in oriental hybrid Lilium variety ‘Siberia.’ Phytochemistry 173:112294

    CAS  PubMed  Google Scholar 

  • Abbas F, Ke Y, Zhou Y, Waseem M, Yu Y, Ashraf U et al (2020b) Cloning, functional characterization and expression analysis of LoTPS5 from Lilium ‘Siberia.’ Gene 756:144921

    CAS  PubMed  Google Scholar 

  • Abbas F, Ke Y, Zhou Y, Yu Y, Waseem M, Ashraf U, Wang C, Wang X, Li X, Yue Y, Yu R, Fan Y (2021) Genome-wide analysis reveals the potential role of MYB transcription factors in floral scent formation in Hedychium coronarium. J Essent Oil Res 12:623742

    Google Scholar 

  • Báez D, Pino JA, Morales D (2011) Floral scent composition in Hedychium coronarium J. Koenig analyzed by SPME. J Essent Oil Res 23:64–67

    Google Scholar 

  • Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G et al (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    PubMed  Google Scholar 

  • Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    CAS  PubMed  Google Scholar 

  • Cen H, Wang T, Liu H, Tian D, Zhang Y (2020) Melatonin application improves salt tolerance of alfalfa (Medicago sativa L.) by enhancing antioxidant capacity. Plants 9:220

    CAS  PubMed Central  Google Scholar 

  • Chen G, Yue Y, Li L, Li Y, Li H, Ding W et al (2020) Genome-wide identification of the auxin response factor (ARF) gene family and their expression analysis during flower development of Osmanthus fragrans. Forests 11:245

    Google Scholar 

  • Comeron JM (1999) K-Estimator: calculation of the number of nucleotide substitutions per site and the confidence intervals. Bioinformatics 15:763–764

    CAS  PubMed  Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:W155–W159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Die JV, Gil J, Millan T (2018) Genome-wide identification of the auxin response factor gene family in Cicer arietinum. BMC Genom 19:301

    Google Scholar 

  • Donner TJ, Sherr I, Scarpella E (2009) Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves. Development 136:3235–3246

    CAS  PubMed  Google Scholar 

  • Dudareva N, Klempien A, Muhlemann JK, Kaplan I (2013) Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol 198:16–32

    CAS  PubMed  Google Scholar 

  • Dudareva N, Martin D, Kish CM, Kolosova N, Gorenstein N, Fäldt J et al (2003) (E)-β-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell 15:1227–1241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW (2005) AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132:4563–4574

    CAS  PubMed  Google Scholar 

  • Fan Y, Yu R, Huang Y, Chen Y (2003) Studies on the essential constituent of Hedychium flavum and H. coronarium. Acta Horti Sin 30:475

    Google Scholar 

  • Fan YP, Wang XR, Yu RC, Yang P (2007) Analysis on the aroma components in several species of Hedychium. Acta Horti Sin 34:231

    CAS  Google Scholar 

  • Farré-Armengol G, Filella I, Llusià J, Peñuelas J (2017) β-Ocimene, a key floral and foliar volatile involved in multiple interactions between plants and other organisms. Molecules 22:1148

    PubMed Central  Google Scholar 

  • Fransson P (1958) Studies on the interaction of antiauxin and native auxin in wheat roots. Physiol Plantarum 11:644–654

    CAS  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T et al (2003) Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature 426:147–153

    CAS  PubMed  Google Scholar 

  • Furutani M, Vernoux T, Traas J, Kato T, Tasaka M, Aida M (2004) PIN-FORMED1 and PINOID regulate boundary formation and cotyledon development in Arabidopsis embryogenesis. Development 131:5021–5030

    CAS  PubMed  Google Scholar 

  • Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nature Chem Biol 3:408–414

    CAS  Google Scholar 

  • Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460

    CAS  PubMed  Google Scholar 

  • Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385

    CAS  PubMed  Google Scholar 

  • Hellens RP, Allan AC, Friel EN, Bolitho K, Grafton K, Templeton MD et al (2005) Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1:13

    PubMed  PubMed Central  Google Scholar 

  • He Y, Liu X, Ye L, Pan C, Chen L, Zou T, Lu G (2016) Genome-wide identification and expression analysis of two-component system genes in tomato. Int J Mol Sci 17:1204

    PubMed Central  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu W, Zuo J, Hou X, Yan Y, Wei Y, Liu J et al (2015) The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress. Front Plant Sci 6:742

    PubMed  PubMed Central  Google Scholar 

  • Kalluri UC, DiFazio SP, Brunner AM, Tuskan GA (2007) Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa. BMC Plant Biol 7:59

    PubMed  PubMed Central  Google Scholar 

  • Ke Y, Abbas F, Zhou Y, Yu R, Yue Y, Li X et al (2019) Genome-Wide Analysis and Characterization of the Aux/IAA Family Genes Related to Floral Scent Formation in Hedychium coronarium. Int J Mol Sci 20:3235

    CAS  PubMed Central  Google Scholar 

  • Krogan NT, Ckurshumova W, Marcos D, Caragea AE, Berleth T (2012) Deletion of MP/ARF5 domains III and IV reveals a requirement for Aux/IAA regulation in Arabidopsis leaf vascular patterning. New Phytol 194:391–401

    CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin MA, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    CAS  PubMed  Google Scholar 

  • Li H, Johnson P, Stepanova A, Alonso JM, Ecker JR (2004) Convergence of signaling pathways in the control of differential cell growth in Arabidopsis. Dev Cell 7:193–204

    CAS  PubMed  Google Scholar 

  • Li SB, Xie ZZ, Hu CG, Zhang JZ (2016) A review of auxin response factors (ARFs) in plants. Front Plant Sci 7:47

    PubMed  PubMed Central  Google Scholar 

  • Liu K, Yuan C, Li H, Lin W, Yang Y, Shen C et al (2015) Genome-wide identification and characterization of auxin response factor (ARF) family genes related to flower and fruit development in papaya (Carica papaya L.). BMC Genom 16:1–12

    Google Scholar 

  • Liu Z, Shi MZ, Xie DY (2014) Regulation of anthocyanin biosynthesis in Arabidopsis thaliana red pap1-D cells metabolically programmed by auxins. Planta 239:765–781

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Luo XC, Sun MH, Xu RR, Shu HR, Wang JW, Zhang SZ (2014) Genomewide identification and expression analysis of the ARF gene family in apple. J Genet 93:785–797

    PubMed  Google Scholar 

  • Medina-Puche L, Molina-Hidalgo FJ, Boersma M, Schuurink RC, López-Vidriero I, Solano R et al (2015) An R2R3-MYB transcription factor regulates eugenol production in ripe strawberry fruit receptacles. Plant Physiol 168:598–614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miresmailli S, Gries R, Gries G, Isman ZRH, MB, (2010) Herbivore-induced plant volatiles allow detection of Trichoplusia ni (Lepidoptera: Noctuidae) infestation on greenhouse tomato plants. Pest Manag Sci 66:916–924

    CAS  PubMed  Google Scholar 

  • Muhlemann JK, Klempien A, Dudareva N (2014) Floral volatiles: from biosynthesis to function. Plant Cell Environ 37:1936–1949

    PubMed  Google Scholar 

  • Muhlemann JK, Maeda H, Chang CY, San Miguel P, Baxter I, Cooper B et al (2012) Developmental changes in the metabolic network of snapdragon flowers. PLoS ONE 7:e40381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagegowda DA (2010) Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Lett 584:2965–2973

    CAS  PubMed  Google Scholar 

  • Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle TJ et al (2005) Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132:4107–4118

    CAS  PubMed  Google Scholar 

  • Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C et al (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17:444–463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oono Y, Ooura C, Rahman A, Aspuria ET, Hayashi KI, Tanaka A et al (2003) p-Chlorophenoxyisobutyric acid impairs auxin response in Arabidopsis root. Plant Physiol 133:1135–1147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pekker I, Alvarez JP, Eshed Y (2005) Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell 17:2899–2910

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng J, Berbel A, Madueño F, Chen R (2017) AUXIN RESPONSE FACTOR3 regulates compound leaf patterning by directly repressing PALMATE-LIKE PENTAFOLIATA1 expression in Medicago truncatula. Front Plant Sci 8:1630

    PubMed  PubMed Central  Google Scholar 

  • Pickett J, Rasmussen H, Woodcock C, Matthes M, Napier J (2003) Plant stress signalling: understanding and exploiting plant–plant interactions. Portland Press Ltd

    Google Scholar 

  • Shen C, Yue R, Sun T, Zhang L, Xu L, Tie S et al (2015) Genome-wide identification and expression analysis of auxin response factor gene family in Medicago truncatula. Front Plant Sci 6:73

    PubMed  PubMed Central  Google Scholar 

  • Su Z, Wang L, Li W, Zhao L, Huang X, Azam SM et al (2017) Genome-wide identification of auxin response factor (ARF) genes family and its tissue-specific prominent expression in pineapple (Ananas comosus). Trop Plant Biol 10:86–96

    CAS  Google Scholar 

  • Tan XL, Fan ZQ, Kuang JF, Lu WJ, Reiter RJ, Lakshmanan P et al (2019) Melatonin delays leaf senescence of Chinese flowering cabbage by suppressing ABFs-mediated abscisic acid biosynthesis and chlorophyll degradation. J Pinn Res 67:e12570

    Google Scholar 

  • Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH (2008) Synteny and collinearity in plant genomes. Science 320:486–488

    CAS  PubMed  Google Scholar 

  • Tuan PA, Bai S, Yaegaki H, Tamura T, Hihara S, Moriguchi T et al (2015) The crucial role of PpMYB10. 1 in anthocyanin accumulation in peach and relationships between its allelic type and skin color phenotype. BMC Plant Biol 15:280

    PubMed  PubMed Central  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1999) Activation and repression of transcription by auxin-response factors. Proc Nat Acad Sci 96:5844–5849

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Ha C, Le DT, Nishiyama R, Watanabe Y, Sulieman S, Tran UT et al (2013) The auxin response factor transcription factor family in soybean: genome-wide identification and expression analyses during development and water stress. DNA Res 20:511–524

    PubMed  PubMed Central  Google Scholar 

  • Wang CK, Han PL, Zhao YW, Ji XL, Yu JQ, You CX et al (2020a) Auxin regulates anthocyanin biosynthesis through the auxin repressor protein MdIAA26. Biochem Biophys Res Commun 533:717–722

    CAS  PubMed  Google Scholar 

  • Wang CK, Han PL, Zhao YW, Yu JQ, You CX, Hu DG et al (2020b) Genome-wide analysis of auxin response factor (ARF) genes and functional identification of MdARF2 reveals the involvement in the regulation of anthocyanin accumulation in apple. N Z J Crop Horti Sci. https://doi.org/10.1080/01140671.2020.1779756

    Article  Google Scholar 

  • Wang D, Pei K, Fu Y, Sun Z, Li S, Liu H et al (2007) Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene 394:13–24

    CAS  PubMed  Google Scholar 

  • Wang YC, Wang N, Xu HF, Jiang SH, Fang HC, Su MY et al (2018) Auxin regulates anthocyanin biosynthesis through the Aux/IAA–ARF signaling pathway in apple. Hortic Res 5:1–11

    PubMed  PubMed Central  Google Scholar 

  • Wen J, Guo P, Ke Y, Liu M, Li P, Wu Y et al (2019) The auxin response factor gene family in allopolyploid Brassica napus. PLoS ONE 14:e0214885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wils CR, Kaufmann K (2017) Gene-regulatory networks controlling inflorescence and flower development in Arabidopsis thaliana. Biochim Biophys Gene Regul Mech 1860:95–105

    CAS  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Raven P (2000) Flora of China, vol. 24 (Flagellariaceae through Marantaceae). Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis.

  • Xie R, Pang S, Ma Y, Deng L, He S, Yi S et al (2015) The ARF, AUX/IAA and GH3 gene families in citrus: genome-wide identification and expression analysis during fruitlet drop from abscission zone A. Mol Genet Genom 290:2089–2105

    CAS  Google Scholar 

  • Xing H, Pudake RN, Guo G, Xing G, Hu Z, Zhang Y et al (2011) Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize. BMC Genom 12:1–13

    Google Scholar 

  • Yue Y, Yu R, Fan Y (2014) Characterization of two monoterpene synthases involved in floral scent formation in Hedychium coronarium. Planta 240:745–762

    CAS  PubMed  Google Scholar 

  • Yue Y, Yu R, Fan Y (2015) Transcriptome profiling provides new insights into the formation of floral scent in Hedychium coronarium. BMC Genom 16:470

    Google Scholar 

  • Zhang X, Zhang H, Zhang H, Tang M (2020) Exogenous melatonin application enhances Rhizophagus irregularis symbiosis and induces the antioxidant response of Medicago truncatula under lead stress. Front Microbiol 11:516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zeng Z, Chen C, Li C, Xia R, Li J (2019) Genome-wide characterization of the auxin response factor (ARF) gene family of litchi (Litchi chinensis Sonn.): Phylogenetic analysis, miRNA regulation and expression changes during fruit abscission. PeerJ 7:e6677

    PubMed  PubMed Central  Google Scholar 

  • Zouine M, Fu Y, Chateigner-Boutin AL, Mila I, Frasse P, Wang H et al (2014) Characterization of the tomato ARF gene family uncovers a multi-levels post-transcriptional regulation including alternative splicing. PLoS ONE 9:84203

    Google Scholar 

Download references

Funding

This work was supported by the Research Projects in Key-Areas of Guangdong Province (Grant no. 2020B20220007), National Natural Science Foundation of China to Y. F. (Grant no. 31770738), People’s Livelihood Science and Technology Projects of Guangzhou to Yanping Fan (Grant no. 201903010054) and National Natural Science Foundation of China to Rangcai Yu (Grant no. 31870690).

Author information

Authors and Affiliations

Authors

Contributions

FA, YF, RY conceived and design the concept. FA, YK and YZ performed the experiment. FA, MW, YZ and UA analyze the data. YY and XL did the formal analysis. FA, KG and MW drafted the manuscript. FA, RY and YF revised and finalized the manuscript. All authors endorse the final version of the manuscript.

Corresponding author

Correspondence to Yanping Fan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Sukhpreet Sandhu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

299_2021_2709_MOESM1_ESM.jpg

Supplementary file 1: Figure 1: Phylogenetic relationships, gene structure, and conserved domain analysis of HcARF TFs (JPG 762 KB)

Supplementary file 2: Figure 2: Multiple sequence alignment of 37 HcARF proteins (PDF 862 KB)

299_2021_2709_MOESM3_ESM.jpg

Supplementary file 3: Figure 3: Sequence alignment of HcARF5 with AtARF1, OsARF7, SlARF1, and VvARF1 proteins (JPG 1201 KB)

299_2021_2709_MOESM4_ESM.tif

Supplementary file 4: Figure 4: The schematic representation of the individual motifs found in HcARF genes (TIF 3086 KB)

299_2021_2709_MOESM5_ESM.jpg

Supplementary file 5: Figure 5: The correlation analysis between the expression pattern of HcARF5 and HcTPS3 gene and emission of β-ocimene contents (JPG 298 KB)

299_2021_2709_MOESM6_ESM.xlsx

Supplementary file 6: Table 1: Detailed characteristics of HcARF genes. Table 2: Primer used in the experiments. Table 3: The Ka/Ks ratios and estimated divergence time for segmentally and tandemly duplicated HcARF genes. Table 4: Numbers of known stress-related elements in the promoter regions of HcARF genes. Table 5: List of ARF gene ids from different species. Table 6: Coding sequences of 37 HcARF genes. Table 7: Protein sequences of 37 HcARFs (XLSX 69 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, F., Ke, Y., Zhou, Y. et al. Genome-wide analysis of ARF transcription factors reveals HcARF5 expression profile associated with the biosynthesis of β-ocimene synthase in Hedychium coronarium. Plant Cell Rep 40, 1269–1284 (2021). https://doi.org/10.1007/s00299-021-02709-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-021-02709-1

Keywords

Navigation