Skip to main content
Log in

Base editing in rice: current progress, advances, limitations, and future perspectives

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Base editing is one of the promising genome editing tools for generating single-nucleotide changes in rice genome.

Abstract

Rice (Oryza sativa L.) is an important staple food crop, feeding half of the population around the globe. Developing new rice varieties with desirable agronomic traits is necessary for sustaining global food security. The use of genome editing technologies for developing rice varieties is pre-requisite in the present scenario. Among the genome editing technologies developed for rice crop improvement, base editing technology has emerged as an efficient and reliable tool for precise genome editing in rice plants. Base editing technology utilizes either adenosine or cytidine base editor for precise editing at the target region. A base editor (adenosine or cytidine) is a fusion of catalytically inactive CRISPR/Cas9 domain and adenosine or cytidine deaminase domain. In this review, authors have discussed the different adenine and cytosine base editors developed so far for precise genome editing of rice via base editing technology. We address the current progress, advances, limitations, as well as future perspectives of the base editing technology for rice crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abudayyeh OO, Gootenberg JS, Franklin B, Koob J, Kellner MJ, Ladha A, Joung J, Kirchgatterer P, Cox DBT, Zhang F (2019) A cytosine deaminase for programmable single-base RNA editing. Sci 365:382–386

    CAS  Google Scholar 

  • Bharat SS, Li S, Li J, Yan L, Xia L (2019) Base editing in plants: current status and challenges. Crop J. https://doi.org/10.1016/j.cj.2019.10.002

    Article  Google Scholar 

  • Chen K, Wang Y, Zhang R, Zhang H, Gao C (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Ann Rev Plant Biol 70:667–697

    CAS  Google Scholar 

  • Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, Zhang F (2017) RNA editing with CRISPR-Cas13. Sci 358:1019–1027

    CAS  Google Scholar 

  • Eid A, Alshareef S, Mahfouz MM (2018) CRISPR base editors: genome editing without double-stranded breaks. Biochem J 475(11):1955–1964

    CAS  PubMed  Google Scholar 

  • Endo M, Mikami M, Endo A, Kaya H, Itoh T, Nishimasu H, Nureki O, Toki S (2019) Genome editing in plants by engineered CRISPR–Cas9 recognizing NG PAM. Nat Plants 5:14–17

    CAS  PubMed  Google Scholar 

  • Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017) Programmable base editing of A_T to G_C in genomic DNA without DNA cleavage. Nature 551:464–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z, Liu DR (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556:57–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hua K, Tao X, Yuan F, Wang D, Zhu JK (2018) Precise AT to GC base editing in the rice genome. Mol Plant 11:627–630

    CAS  PubMed  Google Scholar 

  • Hua K, Tao X, Zhu JK (2019) Expanding the base editing scope in rice by using Cas9 variants. Plant Biotechnol J 17:499–504

    PubMed  Google Scholar 

  • Hua K, Tao X, Liang W, Zhang Z, Gou R, Zhu JK (2020) Simplified adenine base editors improve adenine base editing efficiency in rice. Plant Biotechnol J 18:770–778

    CAS  PubMed  Google Scholar 

  • Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S, Venkataraman G (2018) CRISPR for crop improvement: an update review. Front Plant Sci 9:985

    PubMed  PubMed Central  Google Scholar 

  • Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42:541–544

    CAS  PubMed  Google Scholar 

  • Jin S, Zong Y, Gao Q, Zhu Z, Wang Y, Qin P, Liang C, Wang D, Qiu JL, Zhang F, Gao C (2019) Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364:292–295

    CAS  PubMed  Google Scholar 

  • Jun R, Xixun H, Kejian W, Chun W (2019) Development and application of CRISPR/Cas system in rice. Rice Sci 26(2):69–76

    Google Scholar 

  • Koblan LW, Doman JL, Wilson C et al (2018) Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol 36(9):843–846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Sun Y, Du J, Zhao Y, Xia L (2017) Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Mol Plant 10:526–529

    CAS  PubMed  Google Scholar 

  • Li C, Zong Y, Wang Y, Jin S, Zhang D, Song Q, Zhang R, Gao C (2018) Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol 19:59

    PubMed  PubMed Central  Google Scholar 

  • Li H, Qin R, Liu X, Liao S, Xu R, Yang J, Wei P (2019) CRISPR/Cas9-mediated adenine base editing in rice genome. Rice Sci 26:125–128

    Google Scholar 

  • Lu Y, Zhu JK (2017) Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol Plant 10:523–525

    CAS  PubMed  Google Scholar 

  • Miglani GS (2017) Genome editing in crop improvement: present scenario and future prospects. J Crop Improv 31:453–559

    CAS  Google Scholar 

  • Mishra R, Joshi RK, Zhao K (2018) Genome editing in rice: recent advances, challenges, and future implications. Front Plant Sci 9:1361

    PubMed  PubMed Central  Google Scholar 

  • Mishra R, Joshi RK, Zhao K (2020) Base editing in crops: current advances, limitations and future implications. Plant Biotechnol J 18(1):20–31

    PubMed  Google Scholar 

  • Negishi K, Kaya H, Abe K, Hara N, Saika H, Toki S (2019) An adenine base editor with expanded targeting scope using SpCas9-NGv1 in rice. Plant Biotechnol J 17:1476–1478

    PubMed  PubMed Central  Google Scholar 

  • Nishimasu H, Shi X, Ishiguro S, Gao L, Hirano S, Okazaki S, Noda T, Abudayyeh OO, Gootenberg JS, Mori H, Oura S, Holmes B, Tanaka M, Seki M, Hirano H, Aburatani H, Ishitani R, Ikawa M, Yachie N, Zhang F, Nureki M (2018) Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361:1259–1262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qin R, Li J, Li H, Zhang Y, Liu X, Miao Y, Zhang X, Wei P (2018) Developing a highly efficient and wildly adaptive CRISPR-SaCas9 toolset for plant genome editing. Plant Biotechnol J 17:706–708

    Google Scholar 

  • Qin L, Li J, Wang Q, Xu Z, Sun L, Alariqi M, Manghwar H, Wang G, Li B, Ding X, Rui H, Huang H, Lu T, Lindsey K, Daniell H, Zhang X, Jin S (2019) High efficient and precise base editing of C G to T A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system. Plant Biotechnol J 4:1–12

    Google Scholar 

  • Qin R, Li J, Liu X et al (2020a) SpCas9-NG self-targets the sgRNA sequence in plant genome editing. Nat Plant 6:197–201

    CAS  Google Scholar 

  • Qin R, Liao S, Li J, Li H, Liu X, Yang J, Wei P (2020b) Increasing fidelity and efficiency by modifying cytidine base-editing systems in rice. Crop J 8:396–402

    Google Scholar 

  • Ren B, Yan F, Kuang Y, Li N, Zhang D, Lin H, Zhou H (2017) A CRISPR/Cas9 toolkit for efficient targeted base editing to induce genetic variations in rice. Sci China Life Sci 60:516–519

    PubMed  Google Scholar 

  • Ren B, Yan F, Kuang Y, Li N, Zhang D, Zhou X, Lin H, Zhou H (2018) Improved base editor for efficiently inducing genetic variations in rice with CRISPR/Cas9-guided hyperactive hAID mutant. Mol Plant 11:623–626

    CAS  PubMed  Google Scholar 

  • Romero M, Gatica-Arias A (2019) CRISPR/Cas9: development and application in rice breeding. Rice Sci 26:265–281

    Google Scholar 

  • Schindele A, Dorn A, Puchta H (2019) CRISPR/Cas brings plant biology and breeding into the fast lane. Curr Opin Biotechnol 61:7–14

    PubMed  Google Scholar 

  • Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T, Ishii H, Teramura H, Yamamoto T, Komatsu H, Miura K, Ezura H, Nishida K, Ariizumi T, Kondo A (2017) Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 35:441–443

    CAS  PubMed  Google Scholar 

  • Tan J, Zhang F, Karcher D, Bock R (2019) Engineering of high-precision base editors for site-specific single nucleotide replacement. Nat Commun 10:439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang X, Liu GQ, Zhou JP, Ren QR, You Q, Tian L, Xin XH, Zhong ZH, Liu BL, Zheng XL, Zhang DW, Malzahn A, Gong ZY, Qi YP, Zhang T, Zhang Y (2018) A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Genome Biol 19:84

    PubMed  PubMed Central  Google Scholar 

  • Wang J, Meng X, Hu X, Sun T, Li J, Wang K, Yu H (2019a) xCas9 expands the scope of genome editing with reduced efficiency in rice. Plant Biotechnol J 17:709–711

    PubMed  PubMed Central  Google Scholar 

  • Wang M, Wang Z, Mao Y et al (2019b) Optimizing base editors for improved efficiency and expanded editing scope in rice. Plant Biotechnol J 17(9):1697–1699

    PubMed  PubMed Central  Google Scholar 

  • Wang F, Zhang C, Xu W, Yuan S, Song J, Li L, Zhao J, Yang J (2020) Developing high-efficiency base editors by combining optimized synergistic core components with new types of nuclear localization signal peptide. Crop J. https://doi.org/10.1016/j.cj.2020

    Article  Google Scholar 

  • Wu Y, Xu W, Wang F, Zhao S, Feng F, Song J, Zhang C, Yang J (2019) Increasing cytosine base editing scope and efficiency with engineered Cas9-PmCDA1 fusions and the modified sgRNA in rice. Front Genet 10:379

    PubMed  PubMed Central  Google Scholar 

  • Yan F, Kuang Y, Ren B, Wang J, Zhang D, Lin H (2018) Highly efficient A•T to G•C base editing by Cas9n guided tRNA adenosine deaminase in rice. Mol Plant 11:631–634

    CAS  PubMed  Google Scholar 

  • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zong Y, Wang Y, Li C, Zhang R, Chen K, Ran Y, Qiu JL, Wang D, Gao C (2017) Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35:438–440

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This review work did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

RY and LS writing—original draft preparation; RY collected the back ground information.

Corresponding author

Correspondence to Lingaraj Sahoo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Günther Hahne.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarra, R., Sahoo, L. Base editing in rice: current progress, advances, limitations, and future perspectives. Plant Cell Rep 40, 595–604 (2021). https://doi.org/10.1007/s00299-020-02656-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-020-02656-3

Keywords

Navigation