Skip to main content
Log in

An improved protocol for efficient transformation and regeneration of Setaria italica

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

An efficient and improved transformation method for functional genetics studies in S. italica, being a boon for the Setaria scientific community and for crop improvement.

Abstract

Foxtail millet (Setaria italica) is a short life cycle C4 plant, with sequenced genome, and a potential model plant for C4 species. S. italica is also important on a global food security and healthiness context due to its importance in arid and semi-arid areas. However, despite its importance, there are just few transformation protocols directed to this species. The current protocols reached about 5.5–9% of efficiency, which do not make it a valuable model organism. Different types of explants were used in the above mentioned methods, such as immature and mature inflorescence and shoot apex. However, these techniques have many limitations, such as unavailability of explants throughout the year and a crucial, laborious and considerable time-consuming selection. Aiming a simplified and efficient methodology, we adopted dry mature seeds as explants, which are available in abundance, are constant along the year and well responsive to tissue culture, in addition to a differentiated approach that reaches on an average 19.2% transformation efficiency of S. italica. Thus, we propose a protocol that optimizes the transformation efficiency of this cereal crop allowing a high increase on transformation and regeneration rates. Our transformation protocol provides an interesting tool for Setaria community research as well as enables new strategies for breeding enhanced productivity in the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alimohammadi M, Bagherieh-Najjar MB (2009) Agrobacterium-mediated transformation of plants: basic principles and influencing factors. Afr J Biotechnol 8:5142–5148

    CAS  Google Scholar 

  • Alves SC, Worland B, Thole V, Snape JW, Bevan MW, Vain P (2009) distachyon community standard line Bd21. Nat Protoc 4:638–649

    Article  CAS  Google Scholar 

  • Bandyopadhyay T, Muthamilarasan M, Prasad M (2017) Millets for next generation climate smart agriculture. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01266

    Article  PubMed  PubMed Central  Google Scholar 

  • Buah JN, Danso E, Taah KJ, Abole EA, Bediako EA, Asiedu J, Baidoo R (2010) The effects of different concentrations cytokinins on the in vitro multiplication of plantain (Musa sp). Biotechnology 9:343–347

    Article  CAS  Google Scholar 

  • Casas AM, Kononowicz AK, Zehr UB, Tomes DT, Axtell JD, Butler LG, Bressan RA, Hasegawa PM (1993) Transgenic sorghum plants via microprojectile bombardment. PNAS 90:11212–11216

    Article  CAS  Google Scholar 

  • Ceasar SA, Baker A, Ignacimuthu S (2017) Functional characterization of the PHT1 family transporters of foxtail millet with development of a novel Agrobacterium-mediated transformation procedure. Sci Rep. https://doi.org/10.1038/s41598-017-14447-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Cronauer SS, Krikorian AD (1984) Multiplication of Musa from excised stem tips. Ann Bot 53:321–328

    Article  CAS  Google Scholar 

  • Doust AN, Kellogg EA, Devos KM, Bennetzen JL (2009) Foxtail millet: a sequence-driven grass model system. Plant Physiol 149:137–141

    Article  CAS  Google Scholar 

  • Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74:201–228

    Article  Google Scholar 

  • George EF, Hall MA, Klerk GD (2007) Plant propagationby tissue culture. Volume 1. The background 3 ed. Springer, Netherlands

  • Girgi M, O’Kennedy MM, Morgenstern A, Mayer G, Lörz H, Oldach KH (2002) glaucum L.) R.Br. via microprojectile bombardment of scutellar tissue. Mol Breed 10:243–252

    Article  CAS  Google Scholar 

  • Giridhar P, Indu EP, Vinod K, Chandrashekar A, Ravishankar GA, -Hernández OA (2004) Direct somatic embryogenesis from leaf explants. Acta Physiol Plant 3:363–369

    Google Scholar 

  • Hui Y, Hui Y, Scorza R, Nip W, Khachatourians G (2002) Transgenic plants and crops. CRC Press, Boca Raton, p 888

    Book  Google Scholar 

  • Javed F, Ikram S (2008) Effect of sucrose induced osmotic stress on callus growth and biochemical aspects of two wheat genotypes. Pak J Bot 40:1487–1495

    CAS  Google Scholar 

  • Jones HD, Doherty A, Wu H (2005) Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat. Plant Methods. https://doi.org/10.1186/1746-4811-1-5

    Article  Google Scholar 

  • Kadota M, Niimi Y (2003) Effects of cytokinin types and their concentrations on shoot proliferation and hyperhydrocity in vitro pear cultivar shoots. Plant Cell Tissue Organ Cult 72:261–265

    Article  CAS  Google Scholar 

  • Klem M, Balla J, Machackova I, Eder J, Prochazka S (2004) sativus L.) explants. Plant Growth Regul 31:135–142

    Article  Google Scholar 

  • Kotchoni SO, Noumavo PA, Adjanohoun A, Russo DP, Dell’Angelo J, Gachomo EW, Moussa L (2012) A simple and efficient seed-based approach to induce callus production from B73 maize genotype. Am J Mol Biol 2:380–385

    Article  Google Scholar 

  • Kumar K, Muthamilarasan M, Prasad M (2013) italica L.) subjected to abiotic stress conditions. Plant Cell Tissue Organ Cult 115:13–22

    Article  CAS  Google Scholar 

  • Kumar GP, Subiramani S, Govindarajan S, Sadasivam V, Manickam V, Mogilicherla K, Thiruppathi SK, Narayanasamy J (2015) hirsutum L.) cv. SVPR-2. Biotechnol Rep 7:72–80

    Article  Google Scholar 

  • Lata C, Gupta S, Prasad M (2012) Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Crit Rev Biotechnol 33:328–343

    Article  Google Scholar 

  • Liu Y, Yu J, Zhao Q, Zhu D, Ao GM (2005) italica) by Agrobacterium-mediated. J Agric Biotechnol 13:32–37

    CAS  Google Scholar 

  • Lowe BA, Prakash N, Way M, Mann MT, Spencer TM, Boddupalli RS (2009) Enhanced single copy integration events in corn via particle bombardment using low quantities of DNA. Transgenic Res. https://doi.org/10.1007/s11248-009-9265-0

    Article  PubMed  Google Scholar 

  • Magdum SS (2013) Effect of Agrobacterium induced necrosis, antibiotics induced phytotoxicity and other factors in successful plant transformation. J Stress Physiol Biochem 9:98–112

    Google Scholar 

  • Martins PK, Ribeiro AP, Da Cunha BADB, Kobayashi AK, Molinari HBC (2015) viridis. Biotechnol Rep 6:41–44

    Article  Google Scholar 

  • Martins PK, Mafra V, Souza WR, Ribeiro AP, Vinecky F, Basso MF, Cunha BADB, Kobayashi AK, Molinari HBC (2016) viridis. Sci Rep 6:28348

    Article  CAS  Google Scholar 

  • Meng Z, Liang A, Yang W (2007) Effects of hygromycin on cotton cultures and its application in Agrobacterium-mediated cotton transformation. In Vitro Cell Dev Biol Plant 43:111–118

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Muthamilarasan M, Prasad M (2015) Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses. Theor Appl Genet 128:1–14

    Article  CAS  Google Scholar 

  • Muthamilarasan M, Dhaka A, Yadav R, Prasad M (2016) Exploration of millet models for developing nutrient rich graminaceous crops. Plant Sci. https://doi.org/10.1016/j.plantsci.2015.08.023

    Article  PubMed  Google Scholar 

  • Nguyen DQ, Eamens AL, Grof C (2018) viridis. Plant Methods. https://doi.org/10.1186/s13007-018-0293-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan MJ, van Standen J (1998) The use of charcoal in in vitro culture—a review. Plant Growth Regul 26:155–163

    Article  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  Google Scholar 

  • Popelka JC, Altpeter F (2003) cereale L.). Mol Breed 11:203–211

    Article  CAS  Google Scholar 

  • Rahman MZ, Sharoar MG, Mohammad M, Matin MN, Rahman MH, Rahman MM, Islam MR (2006) High frequency plant regeneration of a dessert banana cv. mehersagar for commercial exploitation. Biotechnology 5:296–300

    Article  Google Scholar 

  • Saad AIM, Elshahed AM (2012) Plant tissue culture media. In: Leva A (ed) Recent advances in plant in vitro culture. InTech, London. https://doi.org/10.5772/50569

    Chapter  Google Scholar 

  • Satish L, Ceasar SA, Shilpa J, Rency AS, Rathinapriya P, Ramesh M (2015) coracana (L.) Gaertn.). Vitro Cell Dev Biol Plant 51:192–200

    Article  Google Scholar 

  • Schmülling T, Werner T, Riefler M, Krupková E, Mams IB (2003) Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. J Plant Res 116:241–252

    Article  Google Scholar 

  • Shan S, Li Z, Newton IP, Zhao C, Li Z, Guo M (2014) A novel protein extracted from foxtail millet bran displays anti-carcinogenic effects in human colon cancer cells. Toxicol Lett 227:129–138

    Article  CAS  Google Scholar 

  • Shukla K, Srivastava S (2014) Evaluation of finger millet incorporated noodles for nutritive value and glycemic index. J Food Sci Technol 51:527–534

    Article  CAS  Google Scholar 

  • Singh RK, Prasad M (2015) Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops. Protoplasma. https://doi.org/10.1007/s00709-015-0905-3

    Article  PubMed  Google Scholar 

  • Slater A, Scott N, Fowler M (2003) Plant biotechnology: the genetic manipulation of plants, 2nd edn. Oxford, Oxford Press University

    Google Scholar 

  • Sood S, Prasad M (2017) Genetic transformation of Setaria: a new perspective. In: Prasad M (ed) The foxtail millet genome, compendium of plant genomes. Springer, Berlin. https://doi.org/10.1007/978-3-319-65617-5_9

    Chapter  Google Scholar 

  • Thomas TD (2008) The role of activated charcoal in plant tissue culture. Biotechnol Adv 26:618–631

    Article  CAS  Google Scholar 

  • Vandesompele JO, Preter KD, Pattyn F, Poppe B, Roy NV, Paepe AD, Speleman F (2002) Accurate normalization RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. https://doi.org/10.1186/gb-2002-3-7-research0034

    Article  PubMed  PubMed Central  Google Scholar 

  • Walid MF, Wu H, Yua X, Cody S, Surinder KS, Fredy A (2015) Generation of transgenic energy cane plants with integration of minimal transgene expression cassette. Curr Pharm Biotechnol 16:407–413

    Article  Google Scholar 

  • Wang L, Ruan Y (2013) Regulation of cell division and expansion by sugar and auxin signaling. Front Plant Sci. https://doi.org/10.3389/fpls.2013.00163

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang M, Pan YL, Li C, Liu C, Zhao Q, Ao GM, Yu JJ (2011) italica). Afr J Biotechnol 10:16466–16479

    CAS  Google Scholar 

  • Wang Y, Lui H, Xin Q (2014) italica). Crop J 2:244–254. https://doi.org/10.1016/j.cj.2014.05.001

    Article  Google Scholar 

  • Wu E, Lenderts B, Glassman K, Berezowska-Kaniewska M, Christensen H, Asmus T, Zhen S, Chu U, Cho MJ, Zhao ZY (2014) Optimized Agrobacterium-mediated sorghum transformation protocol and molecular data of transgenic sorghum plants. Vitro Cell Dev Biol Plant 50:9–18

    Article  Google Scholar 

  • Yanagisawa S, Yoo SD, Sheen J (2003) Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature 425:521–525

    Article  CAS  Google Scholar 

  • Yasmin S, Mensuali-Sodi A, Perata P, Pucciariello C (2013) Ethylene influences in vitro regeneration frequency in the FR13A rice harbouring the SUBIA gene. Plant Growth Regul. https://doi.org/10.1007/s10725-013-9840-5

    Article  Google Scholar 

  • Zereyesus YA, Dalton TJ (2017) Rates of return to sorghum and millet research investments: a meta-analysis. PLoS ONE ONE. https://doi.org/10.1371/journal.pone.0180414

    Article  Google Scholar 

  • Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W, Tao Y, Bian C, Han C, Xia Q, Peng X, Cao R, Yang X, Zhan D, Hu J, Zhang Y, Li H, Li H, Li N, Wang J, Wang C, Wang R, Guo T, Cai Y, Liu C, Xiang H, Shi Q, Huang P, Chen Q, Li Y, Wang J, Zhao Z, Wang J (2012) italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 30:549–554

    Article  CAS  Google Scholar 

  • Zhang W, Dewey RE, Boss W, Phillippy BQ, Qu R (2013) Enhanced Agrobacterium-mediated transformation efficiencies in monocot cells is associated with attenuated defense responses. Plant Mol Biol 81:273–286

    Article  CAS  Google Scholar 

  • Zhu C, Yang J, Shyu C (2017) Setaria comes of age: meeting report on the second international Setaria genetics conference. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01562

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to São Paulo Research Foundation for financial support (FAPESP 2012/23838-7 and 2018/15576-9) and Universidade Federal do ABC (UFABC), Coordination for the Improvement of Higher Education Personnel (CAPES) and National Council for Scientific and Technological Development (CNPq 141437/2017-0) for Grants provided.

Author information

Authors and Affiliations

Authors

Contributions

DCC conceived and designed the experiments. HBCM, JPNS and MFB transferred the knowledge of the Setaria viridis transformation protocol between institutions. CMS and DR provided intellectual input, performed all assays and wrote the first version of manuscript. DCC, HBCM, JPNS and MFB revised the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to D. C. Centeno.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Communicated by Neal Stewart.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, C.M., Romeiro, D., Silva, J.P. et al. An improved protocol for efficient transformation and regeneration of Setaria italica. Plant Cell Rep 39, 501–510 (2020). https://doi.org/10.1007/s00299-019-02505-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-019-02505-y

Keywords

Navigation