Skip to main content
Log in

Citrus carotenoid isomerase gene characterization by complementation of the “Micro-Tom” tangerine mutant

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Complementation of the “Micro-Tom” tomato tangerine mutant with a Citrus CRTISO allele restores the wild-type fruit carotenoid profile, indicating that the Citrus allele encodes an authentic functional carotenoid isomerase.

Abstract

Citrus fruits are rich in carotenoids; the genus offers a large diversity in composition, yet to be fully explored to improve fruit nutritional quality. As perennial tree species, Citrus lack the resources for functional genetic studies, requiring the use of model plant systems. Here, we used the “Micro-Tom” (MT) tomato carrying the tangerine mutation (t), deficient for the carotenoid isomerase (CRTISO) gene, to functionally characterize the homologous C. sinensis genes. We identified four putative loci in the C. sinensis genome, named CsCRTISO, CsCRTISO-Like 1, CsCRTISO-Like 2, and CsCRTISO-Like 2B, with the latter as a presumed duplication of CRTISO-Like 2. In general, all the Citrus paralogs showed less expression specialization than the tomato ones, with CsCRTISO being the most expressed gene in all tissues analyzed. MT-t plants were successfully complemented with the CsCRTISO, and fruits showed a carotenoid profile similar to the control, indicating that the Citrus allele indeed encodes an authentic functional carotenoid isomerase and that the signal peptide is functional in tomato. MT was silenced using an inverted repeat of a fragment from the Citrus CRTISO resulting in a stronger phenotype than MT-t. MT-t and MT silenced for CRTISO presented an overall decrease in transcript accumulation of all genes from the biosynthesis pathway. The expression of the Citrus CRTISO gene is able to restore the biosynthesis of carotenoids with the appropriate regulation in MT-t. The decrease in transcript accumulation in MT-t and MT-CRTISO-suppressed lines reinforces previous suggestions that transcriptional regulation of the carotenoid biosynthesis involves regulatory loops by intermediate products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrouk M, Murat F, Pont C, Messing J, Jackson S, Faraut T, Tannier E, Plomion C, Cooke R, Feuillet C, Salse J (2010) Palaeogenomics of plants: synteny-based modelling of extinct ancestors. Trends Plant Sci 15:479–487

    Article  CAS  PubMed  Google Scholar 

  • Ahuja MR, Fladung M (2014) Integration and inheritance of transgenes in crop plants and trees. Tree Genet Genomes 10:779–790

    Article  Google Scholar 

  • Alquézar B, Rodrigo MJ, Zacarías L (2008) Carotenoid biosynthesis and their regulation in Citrus fruits. Tree For Sci Biotechnol 2:23–35

    Google Scholar 

  • Carvalho RF, Campos M, Pino L, Crestana S, Zsogon A, Lima J, Benedito V, Peres L (2011) Convergence of developmental mutants into a single tomato model system: ‘Micro-Tom’ as an effective toolkit for plant development research. Plant Methods 7:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cazzonelli CI (2011) Carotenoids in nature: insights from plants and beyond. Funct Plant Biol 38:833–847

    Article  CAS  Google Scholar 

  • Chen C, Piero ARL, Gmitter F Jr (2015) Pigments in Citrus. In: Chen C (ed) Pigments in fruits and vegetables. Springer, New York, pp 165–187

    Google Scholar 

  • Curtolo M, Cristofani-Yaly M, Gazafi R, Takita MA, Figueira A, Machado MA (2017) QTL mapping for fruit quality in Citrus using DArTseq markers. BMC Genom 18:289

    Article  CAS  Google Scholar 

  • Davidovich-Rikanati R, Lewinsohn E, Bar E, Iijima Y, Pichersky E, Sitrit Y (2008) Overexpression of the lemon basil α-zingiberene synthase gene (ZIS) increases both mono- and sesquiterpene content in tomato fruit. Plant J 56:228–238

    Article  CAS  PubMed  Google Scholar 

  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emmanuel E, Levy AA (2002) Tomato mutants as tools for functional genomics. Curr Opin Plant Biol 5:112–117

    Article  CAS  PubMed  Google Scholar 

  • Expósito-Rodríguez M, Borges AA, Borges-Pérez A, Pérez JA (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 8:131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fantini E, Falcone G, Frusciante S, Giliberto L, Giuliano G (2013) Dissection of tomato lycopene biosynthesis through Virus-Induced Gene Silencing. Plant Physiol 163:986–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiedor J, Burda K (2014) Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6:466–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fray R, Grierson D (1993) Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and cosuppression. Plant Mol Biol 22:589–602

    Article  CAS  PubMed  Google Scholar 

  • Fulton TM, Chunzoongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13:207–209

    Article  CAS  Google Scholar 

  • Galpaz N, Ronen G, Khalfa Z, Zamir D, Hirschberg J (2006) A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus. Plant Cell 18:1947–1960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Getinet H, Seyoum T, Woldetsadik K (2008) Effect of cultivar, maturity stage and storage environment on quality of tomatoes. J Food Eng 87:467–478

    Article  Google Scholar 

  • Goodwin TW (1980) Biosynthesis of carotenoids. In: Goodwin TW (ed) The biochemistry of the carotenoids. vol 1 Plants. Chapman and Hall, London, pp 33–76

    Chapter  Google Scholar 

  • Guo F, Zhou W, Zhang J, Xu Q, Deng X (2012) Effect of the Citrus lycopene β-cyclase transgene on carotenoid metabolism in transgenic tomato fruits. PLoS One 7(2):e32221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikoma Y, Matsumoto H, Kato M (2016) Diversity in the carotenoid profiles and the expression of genes related to carotenoid accumulation among citrus genotypes. Breed Sci 66:139–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isaacson T, Ronen G, Zamir D, Hirschberg J (2002) Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants. Plant Cell 14:333–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kachanovsky DE, Filler S, Isaacson T, Hirschberg J (2012) Epistasis in tomato color mutations involves regulation of phytoene synthase 1 expression by cis-carotenoids. Proc Natl Acad Sci USA 109:19201–19206

    Article  Google Scholar 

  • Karimi M, Inzé D, Depicker A (2002) GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  CAS  PubMed  Google Scholar 

  • Kim IJ, Lee J, Han JA, Kim CS, Hur Y (2011) Citrus Lea promoter confers fruit-preferential and stress-inducible gene expression in Arabidopsis. Can J Plant Sci 91:459–466

    Article  CAS  Google Scholar 

  • Kiokias S, Proestos C, Varzakas T (2016) A review of the structure, biosynthesis, absorption of carotenoids-analysis and properties of their common natural extracts. Curr Res Nutr Food Sci 1:25–37

    Article  Google Scholar 

  • Liu L, Shao Z, Zhang M, Wang Q (2015) Regulation of carotenoid metabolism in tomato. Mol Plant 8:28–39

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Zhang C, Albrecht U, Shimizu R, Wang G, Bowman KD (2013) Overexpression of a citrus NDR1 ortholog increases disease resistance in Arabidopsis. Front Plant Sci 4:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsumoto H, Ikoma Y, Kato M, Kuniga T, Nakajima N, Yoshida T (2007) Quantification of carotenoids in citrus fruit by LC-MS and comparison of patterns of seasonal changes for carotenoids among citrus varieties. J Agric Food Chem 55:2356–2368

    Article  CAS  PubMed  Google Scholar 

  • Meissner R, Jacobson Y, Melame S, Levyatuv S, Shalev G, Ashri A, Elkind Y, Levy A (1997) A new model system for tomato genetics. Plant J 12:1465–1472

    Article  CAS  Google Scholar 

  • Mezzomo N, Ferreira SRS (2016) Functionality, sources, and processing by supercritical technology: a Review. J Chem 2016:3164312

    Article  CAS  Google Scholar 

  • Nisar N, Li L, Lu S, Khin NC, Pogson BJ (2015) Carotenoid metabolism in plants. Mol Plant 8:68–82

    Article  CAS  Google Scholar 

  • Park H, Kreunen SS, Cuttriss AJ, DellaPenna D, Pogson BJ (2002) Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell 14:321–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pecker I, Gabbay R, Cunningham FX, Hirschberg J (1996) Cloning and characterization of the cDNA for lycopene beta-cyclase from tomato reveals decrease in its expression during fruit ripening. Plant Mol Biol 30:807–819

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro TT, Litholdo CG Jr, Sereno ML, Leal GA Jr, Albuquerque PS, Figueira A (2011) Establishing references for gene expression analyses by RT-qPCR in Theobroma cacao tissues. Genet Mol Res 10:3291–3305

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro TT, Nishimura DS, Nadai FB, Figueira A, Latado RR (2015) Selection of reference genes for expression analyses of red-fleshed sweet orange (Citrus sinensis). Genet Mol Res 14:18440–18451

    Article  CAS  PubMed  Google Scholar 

  • Pino LE, Lombardi-Crestana S, Azevedo MS, Scotton DC, Borgo L, Quecini V, Figueira A, Peres LEP (2010) The Rg1 allele as a valuable tool for genetic transformation of the tomato ‘Micro-Tom’ model system. Plant Methods 6:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezaei MK, Deokar A, Tar’an B (2016) Identification and expression analysis of candidate genes involved in carotenoids biosynthesis in chickpea seeds. Front Plant Sci 7:1867

    Article  PubMed  PubMed Central  Google Scholar 

  • Ronen G, Cohen M, Zamir D, Hirschberg J (1999) Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. Plant J 17:341–351

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Sola MA, Rodríguez-Concepción M (2012) Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book 10:e0158

    Article  PubMed  PubMed Central  Google Scholar 

  • Sato S, Tabata S, Hirakawa H, Asamizu E, Shirasawa K, Isobe S, Kaneko T, Nakamura Y, Shibata D, Aoki K et al (2012) Tomato Genome Consortium The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  CAS  Google Scholar 

  • Sérino S, Gomez L, Costagliola G, Gautier H (2009) HPLC assay of tomato carotenoids: validation of a rapid microextraction technique. J Agric Food Chem 57:8753–8760

    Article  CAS  PubMed  Google Scholar 

  • Sherwina JC, Reacher MH, Dean WH, Ngondi J (2012) Epidemiology of vitamin A deficiency and xerophthalmia in at-risk populations. Trans R Soc Trop Med Hyg 106:205–214

    Article  CAS  Google Scholar 

  • Sorkina A, Bardosh G, Liu YZ, Fridman I, Schlizerman L, Zur N, Or E, Goldschmidt EE, Blumwald E, Sadka A (2011) Isolation of a citrus promoter specific for reproductive organs and its functional analysis in isolated juice sacs and tomato. Plant Cell Rep 30:1627–1640

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Yasui Y, Ishigamori-Suzuki R, Oyama T (2008) Citrus compounds inhibits inflammation- and obesity-related colon carcinogenesis in mice. Nutr Cancer 1:70–80

    Article  CAS  Google Scholar 

  • Tao N, Hu Z, Liu Q, Xu J, Cheng Y, Guo L, Guo W, Deng X (2007) Expression of phytoene synthase gene (Psy) is enhanced during fruit ripening of Cara-Cara navel Orange (Citrus sinensis Osbeck). Plant Cell Rep 26:837–843

    Article  CAS  PubMed  Google Scholar 

  • Walter MH, Strack D (2011) Carotenoids and their cleavage products: biosynthesis and functions. Nat Prod Rep 28:663–692

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Chen D, Lei Y, Chang J-W, Hao B-H, Xing F, Li S, Xu Q, Deng XX, Chen LL (2014) Citrus sinensis Annotation Project (CAP): a comprehensive database for sweet orange genome. PLoS One 9(1):e87723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westphal A, Böhm V (2015) Properties, distribution, bioavailability, metabolism and health effects. Ernahrungs Umschau 62:196–207

    Google Scholar 

  • Xu P, Zhang Y, Kang L, Roossinck MJ, Mysore KS (2006) Computational estimation and experimental verification of off-target silencing during posttranscriptional gene silencing in plants. Plant Physiol 142:429–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Q, Chen LL, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao WB, Hao B-H, Lyon MP, Chen J, Gao S, Xing F, Lan H, Chang JW, Ge X, Lei Y, Hu Q, Miao Y, Wang L, Xiao S, Biswas MK, Zeng W, Guo F, Cao H, Yang X, Xu XW, Cheng Y-J, Xu J, Liu J-H, Luo OJ, Tang Z, Guo W-W, Kuang H, Zhang H-Y, Roose ML, Nagarajan N, Deng X-X, Ruan Y (2013) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45:59–66

    Article  CAS  PubMed  Google Scholar 

  • Zouine M, Maza E, Djari A, Lauvernier M, Frasse P, Smouni A, Pirrello J, Bouzayen M (2017) TomExpress, a unified tomato RNA-Seq platform for visualization of expression data, clustering and correlation networks. Plant J 92(4):727–735

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Maiara Curtolo for assistance in identifying the location of CsCRTISO-L1 in the Citrus genome. TTP, LEPP, EP, RAM, MMM, and AF were recipients of fellowships from the Brazilian National Research Council (CNPq), whose support was greatly appreciated. The funder had no role in the study design, data collection, analysis and interpretation, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Figueira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Prakash Lakshmanan.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2828 KB)

Supplementary material 2 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinheiro, T.T., Peres, L.E.P., Purgatto, E. et al. Citrus carotenoid isomerase gene characterization by complementation of the “Micro-Tom” tangerine mutant. Plant Cell Rep 38, 623–636 (2019). https://doi.org/10.1007/s00299-019-02393-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-019-02393-2

Keywords

Navigation