Skip to main content
Log in

Effect of terbinafine on the biosynthetic pathway of isoprenoid compounds in carrot suspension cultured cells

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Terbinafine induced a significant increase of squalene production. Terbinafine increased the expression levels of squalene synthase. Cyclodextrins did not work as elicitors due to the gene expression levels obtained.

Abstract

Plant sterols are essential components of membrane lipids, which contributing to their fluidity and permeability. Besides their cholesterol-lowering properties, they also have anti-inflammatory, antidiabetic and anticancer activities. Squalene, which is phytosterol precursor, is widely used in medicine, foods and cosmetics due to its anti-tumor, antioxidant and anti-aging activities. Nowadays, vegetable oils constitute the main sources of phytosterols and squalene, but their isolation and purification involve complex extraction protocols and high costs. In this work, Daucus carota cell cultures were used to evaluate the effect of cyclodextrins and terbinafine on the production and accumulation of squalene and phytosterols as well as the expression levels of squalene synthase and cycloartenol synthase genes. D. carota cell cultures were able to produce high levels of extracellular being phytosterols in the presence of cyclodextrins (12 mg/L), these compounds able to increase both the secretion and accumulation of phytosterols in the culture medium. Moreover, terbinafine induced a significant increase in intracellular squalene production, as seen after 168 h of treatment (497.0 ± 23.5 µg g dry weight−1) while its extracellular production only increased in the presence of cyclodextrins.The analysis of sqs and cas gene expression revealed that cyclodextrins did not induce genes encoding enzymes involved in the phytosterol biosynthetic pathway since the expression levels of sqs and cas genes in cyclodextrin-treated cells were lower than in control cells. The results, therefore, suggest that cyclodextrins were only able to release phytosterols from the cells to the extracellular medium, thus contributing to their acumulation. To sum up, D. carota cell cultures treated with cyclodextrins or terbinafine were able to produce high levels of phytosterols and squalene, respectively, and, therefore, these suspension-cultured cells of carrot constitute an alternative biotechnological system, which is at the same time more sustainable, economic and ecological for the production of these bioactive compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almagro L, Belchí-Navarro S, Martínez-Márquez A, Bru R, Pedreño MA (2015) Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and coronatine. Plant Physiol Biochem 97:361–367

    Article  PubMed  CAS  Google Scholar 

  • Almagro L, García-Pérez P, Belchí-Navarro S, Sánchez-Pujante PJ, Pedreño MA (2016) New strategies for the use of Linum usitatissimum cell factories for the production of bioactive compounds. Plant Physiol Biochem 99:73–78

    Article  PubMed  CAS  Google Scholar 

  • Awad AB, Roy R, Fink CS (2003) β-sitosterol, a plant sterol, induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells. Oncol Rep 10:497–500

    PubMed  CAS  Google Scholar 

  • Belchí-Navarro S, Almagro L, Lijavetzky D, Bru R, Pedreño MA (2012) Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and methyljasmonate. Plant Cell Rep 31:81–89

    Article  PubMed  CAS  Google Scholar 

  • Bondioli P, Mariani C, Lanzani A, Fedeli E, Muller A (1993) Squalene recovery from olive oil deodorizer distillates. J Am Oil Chem Soc 70:763–766

    Article  CAS  Google Scholar 

  • Breithaupt DE, Bamedi A (2001) Carotenoid esters in vegetables and fruits: a screening with emphasis on β-cryptoxanthin esters. J Agric Food Chem 49:2064–2070

    Article  PubMed  CAS  Google Scholar 

  • Briceño Z, Almagro L, Sabater-Jara AB, Calderón AA, Pedreño MA, Ferrer MA (2012) Enhancement of phytosterols, taraxasterol and induction of extracellular pathogenesis-related proteins in cell cultures of Solanum lycopersicum cv Micro-Tom elicited with cyclodextrins and methyl jasmonate. J Plant Physiol 169:1050–1058

    Article  PubMed  CAS  Google Scholar 

  • Devarenne TP, Ghosh A, Chappell J (2002) Regulation of squalene synthase, a key enzyme of sterol biosynthesis, in tobacco. Plant Physiol 129:1095–1106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Favre B, Ghannoum MA, Ryder NS (2004) Biochemical characterization of terbinafine-resistant Trichophyton rubrum isolates. Med Mycol 42:525–529

    Article  PubMed  CAS  Google Scholar 

  • Flores-Sánchez IJ, Ortega-López J, Montes-Horcasitas MDC, Ramos-Valdivia AC (2002) Biosynthesis of sterols and triterpenes in cell suspension cultures of Uncaria tomentosa. Plant Cell Physiol 43:1502–1509

    Article  PubMed  Google Scholar 

  • García-Llatas G, Rodríguez-Estrada MT (2011) Current and new insights on phytosterol oxides in plant sterol-enriched food. Chem Phys Lipids 164:607–624

    Article  PubMed  CAS  Google Scholar 

  • Goossens A, Häkkinen ST, Laakso I, Seppänen-Laakso T, Biondi S, De Sutter V, Inzé D (2003) A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Natl Acad Sci USA 100:8595–8600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Griebel T, Zeier J (2010) A role for β-sitosterol to stigmasterol conversion in plant–pathogen interactions. Plant J 63:254–268

    Article  PubMed  CAS  Google Scholar 

  • Hager TJ, Howard LR (2006) Processing effects on carrot phytonutrients. HortScience 41:74–79

    CAS  Google Scholar 

  • He HP, Corke H (2003) Oil and squalene in Amaranthus grain and leaf. J Agr Food Chem 51:7913–7920

    Article  CAS  Google Scholar 

  • Kim BJ, Gibson DM, Shuler ML (2005) Relationship of viability and apoptosis to taxol production in Taxus sp. suspension cultures elicited with methyl jasmonate. Biotechnol Prog 21:700–707

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Kobayashi K, Yamaguchi H, Inoue YM, Takagi K, Fushihara K, Muranaka T (2017) Platform for “chemical metabolic switching” to increase sesquiterpene content in plants. Plant Biotechnol 34:65–69

    Article  Google Scholar 

  • Larronde F, Gaudillère JP, Krisa S, Decendit A, Deffieux G, Mérillon JM (2003) Airborne methyl jasmonate induces stilbene accumulation in leaves and berries of grapevine plants. Am J Enol Viticult 54:63–66

    CAS  Google Scholar 

  • Lee-Parsons CW, Ertürk S (2005) Ajmalicine production in methyl jasmonate-induced Catharanthus roseus cell cultures depends on Ca2+ level. Plant Cell Rep 24:677–682

    Article  PubMed  CAS  Google Scholar 

  • Leja M, Kamińska I, Kramer M, Maksylewicz-Kaul A, Kammerer D, Carle R, Baranski R (2013) The content of phenolic compounds and radical scavenging activity varies with carrot origin and root color. Plant Foods Hum Nutr 68:163–170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miras-Moreno B, Almagro L, Pedreño MA, Sabater-Jara AB (2016) Enhanced accumulation of phytosterols and phenolic compounds in cyclodextrin-elicited cell suspension culture of Daucus carota. Plant Sci 250:154–164

    Article  PubMed  CAS  Google Scholar 

  • Moreau RA, Whitaker BD, Hicks KB (2002) Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Prog Lipid Res 41:457–500

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nurhalim L, Kristanti T, Chahyadi A, Suhandono S (2014) Effect of terbinafin and DMSO on the gene expression level of squalene synthase (sqs) and amorpha-4, 11-diene synthase (ads) in Artemisia annua L. Procedia Chem 13:85–91

    Article  CAS  Google Scholar 

  • Pauwels L, Morreel K, De Witte E, Lammertyn F, Van Montagu M, Boerjan W, Goossens A (2008) Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. Proc Natl Acad Sci USA 105:1380–1385

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao CV, Newmark HL, Reddy BS (1998) Chemopreventive effect of squalene on colon cancer. Carcinogenesis 19:287–290

    Article  PubMed  CAS  Google Scholar 

  • Reddy LH, Couvreur P (2009) Squalene: A natural triterpene for use in disease management and therapy. Adv Drug Deliv Rev 61:1412–1426

    Article  PubMed  CAS  Google Scholar 

  • Sabater-Jara AB, Almagro L, Belchi-Navarro S, Ferrer MA, Barcelo AR, Pedreno MA (2010) Induction of sesquiterpenes, phytoesterols and extracellular pathogenesis-related proteins in elicited cell cultures of Capsicum annuum. J Plant Physiol 167:1273–1281

    Article  PubMed  CAS  Google Scholar 

  • Sabater-Jara AB, Pedreño MA (2013) Use of β-cyclodextrins to enhance phytosterol production in cell suspension cultures of carrot (Daucus carota L.). Plant Cell, Tiss Org Cult. 114:249–258

    Article  CAS  Google Scholar 

  • Santas J, Codony R, Rafecas M (2013) Phytosterols: beneficial effects. In: Ramawat K, Mérillon JM (eds) Natural products. Springer, Berlin, pp 3437–3464

    Chapter  Google Scholar 

  • Seo JW, Jeong JH, Shin CG, Lo SC, Han SS, Yu KW, Choi YE (2005) Overexpression of squalene synthase in Eleutherococcus senticosus increases phytosterol and triterpene accumulation. Phytochemistry 66:869–877

    Article  PubMed  CAS  Google Scholar 

  • Sharma KD, Karki S, Thakur NS, Attri S (2012) Chemical composition, functional properties and processing of carrot—a review. J Food Sci Tech Mys 49:22–32

    Article  CAS  Google Scholar 

  • Sivakumar G, Paek KY (2005) Methyl jasmonate induce enhanced production of soluble biophenols in Panax ginseng adventitious roots from commercial scale bioreactors. Chem Nat Compd 41:669–673

    Article  CAS  Google Scholar 

  • Tassoni A, Fornalè S, Franceschetti M, Musiani F, Michael AJ, Perry B, Bagni N (2005) Jasmonates and Na-orthovanadate promote resveratrol production in Vitis vinifera cv. Barbera cell cultures. New Phytol 166:895–905

    Article  PubMed  CAS  Google Scholar 

  • Uzqueda M, Martín C, Zornoza A, Sánchez M, Vélaz I (2010) Physicochemical characterization of terbinafine-cyclodextrin complexes in solution and in the solid state. J Incl Phenom Macro 66:393–402

    Article  CAS  Google Scholar 

  • Veen M, Stahl U, Lang C (2003) Combined overexpression of genes of the ergosterol biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae. FEMS Yeast Res 4:87–95

    Article  PubMed  CAS  Google Scholar 

  • Wentzinger LF, Bach TJ, Hartmann MA (2002) Inhibition of squalene synthase and squalene epoxidase in tobacco cells triggers an up-regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Physiol 130:334–346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woyengo TA, Ramprasath VR, Jones PJH (2009) Anticancer effects of phytosterols. Eur J Clin Nutr 63:813–820

    Article  PubMed  CAS  Google Scholar 

  • Yates PJ, Haughan PA, Lenton JR, Goad LJ (1991) Effects of terbinafine on growth, squalene, and steryl ester content of a celery cell suspension culture. Pestic Biochem Phys 40:221–226

    Article  CAS  Google Scholar 

  • Yoon HJ, Kim HK, Ma CJ, Huh H (2000) Induced accumulation of triterpenoids in Scutellaria baicalensis suspension cultures using a yeast elicitor. Biotechnol Lett 22:1071–1075

    Article  CAS  Google Scholar 

  • Zaragoza-Martínez F, Lucho-Constantino GG, Ponce-Noyola T, Esparza-García F, Poggi-Varaldo H, Cerda-García-Rojas CM, Ramos-Valdivia AC, 2016. Jasmonic acid stimulates the oxidative responses and triterpene production in Jatropha curcas cell suspension cultures through mevalonate as biosynthetic precursor. Plant Cell, Tiss Org Cult. 127:47–56

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministerio de Economía y Competitividad (no. BIO2014-51861-R) and Fundación Seneca-Agencia de Ciencia y Tecnología de la Región de Murcia (no. 19876/GERM/15).

Author information

Authors and Affiliations

Authors

Contributions

BMM, LA, ABSJ, MAP conceived and designed the experiments. BMM, ABSJ performed the experiments. BMM analyzed the data. BMM, LA, ABSJ MAP contributed to writing of the manuscript.

Corresponding author

Correspondence to Begoña Miras-Moreno.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Salim Al-Babili.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miras-Moreno, B., Almagro, L., Pedreño, M.A. et al. Effect of terbinafine on the biosynthetic pathway of isoprenoid compounds in carrot suspension cultured cells. Plant Cell Rep 37, 1011–1019 (2018). https://doi.org/10.1007/s00299-018-2287-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-018-2287-4

Keywords

Navigation