Skip to main content
Log in

Non-coding RNAs and plant male sterility: current knowledge and future prospects

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Latest outcomes assign functional role to non-coding (nc) RNA molecules in regulatory networks that confer male sterility to plants.

Abstract

Male sterility in plants offers great opportunity for improving crop performance through application of hybrid technology. In this respect, cytoplasmic male sterility (CMS) and sterility induced by photoperiod (PGMS)/temperature (TGMS) have greatly facilitated development of high-yielding hybrids in crops. Participation of non-coding (nc) RNA molecules in plant reproductive development is increasingly becoming evident. Recent breakthroughs in rice definitively associate ncRNAs with PGMS and TGMS. In case of CMS, the exact mechanism through which the mitochondrial ORFs exert influence on the development of male gametophyte remains obscure in several crops. High-throughput sequencing has enabled genome-wide discovery and validation of these regulatory molecules and their target genes, describing their potential roles performed in relation to CMS. Discovery of ncRNA localized in plant mtDNA with its possible implication in CMS induction is intriguing in this respect. Still, conclusive evidences linking ncRNA with CMS phenotypes are currently unavailable, demanding complementing genetic approaches like transgenics to substantiate the preliminary findings. Here, we review the recent literature on the contribution of ncRNAs in conferring male sterility to plants, with an emphasis on microRNAs. Also, we present a perspective on improved understanding about ncRNA-mediated regulatory pathways that control male sterility in plants. A refined understanding of plant male sterility would strengthen crop hybrid industry to deliver hybrids with improved performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Andersson SGE, Karlberg O, Canback B, Kurland CG (2002) On the origin of mitochondria: a genomics perspective. Philos Trans R Soc Lond Ser 358:165–179

    Article  CAS  Google Scholar 

  • Arnould T, Michel S, Renard P (2015) Mitochondria retrograde signaling and the UPR mt: where are we in mammals? Int J Mol Sci 16:18224–18251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axtell MJ (2013) Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64: 137–159

    Article  CAS  PubMed  Google Scholar 

  • Axtell MJ, Snyder JA, Bartel DP (2007) Common functions for diverse small RNAs of land plants. Plant Cell 19:1750–1769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker CC, Sieber P, Wellme F, Meyerowitz EM (2005) The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr Biol 15:303–315

    Article  CAS  PubMed  Google Scholar 

  • Bao N, Lye KW, Barton MK (2004) MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev Cell 7:653–662

    Article  CAS  PubMed  Google Scholar 

  • Bardou F, Ariel F, Simpson CG et al (2014) Long noncoding RNA modulates alternative splicing regulators in Arabidopsis. Dev Cell 30:166–176

    Article  CAS  PubMed  Google Scholar 

  • Barkan A, Small I (2014) Pentatricopeptide repeat proteins in plants. Annu Rev Plant Biol 65:415–442

    Article  CAS  PubMed  Google Scholar 

  • Barkan A, Rojas M, Fujii S, Yap A, Chong YS, Bond CS (2012) A combinatorial amino acid code for RNA recognition by pentatricopeptide repeat proteins. PLoS Genet 8:e1002910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Beltran M, Puig I, Pen˜a C et al (2008) A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial–mesenchymal transition. Genes Dev 22:756–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    Article  CAS  PubMed  Google Scholar 

  • Boccara M, Sarazin A, Thiebeauld O et al (2014) The Arabidopsis miR472-RDR6 silencing pathway modulates PAMP- and effector-triggered immunity through the post-transcriptional control of disease resistance genes. PLoS Pathog 10:e1003883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bohra A, Jha UC, Premkumar A, Bisht D, Singh NP (2016) Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. Plant Cell Rep 35:967–993

    Article  CAS  PubMed  Google Scholar 

  • Bohra A, Jha R, Singh IP et al (2017) Novel CMS lines in pigeonpea [Cajanus cajan (L.) Millspaugh] derived from cytoplasmic substitutions, their effective restoration and deployment in hybrid breeding. The Crop J 5:89–94

    Article  Google Scholar 

  • Bologna NG, Mateos JL, Bresso EG, Palatnik JF (2009) A loop-to-base processing mechanism underlies the biogenesis of plant microRNAs miR319 and miR159. EMBO J 28:3646–3656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnet E, Wuyts J, Rouzé P, Van de Peer Y (2004) Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA 101:11511–11516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnet E, He Y, Billiau K, Van de Peer Y (2010) TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics 26:1566–1568

    Article  CAS  PubMed  Google Scholar 

  • Borg M, Brownfield L, Khatab H et al (2011) The R2R3 MYB transcription factor DUO1 activates a male germline-specific regulon essential for sperm cell differentiation in Arabidopsis. Plant Cell 23:2534–2549

    Article  CAS  Google Scholar 

  • Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16: 727–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosacchi M, Gurdon C, Maliga P (2015) Plastid genotyping reveals the uniformity of cytoplasmic male sterile-T maize cytoplasms. Plant Physiol 169:2129–2137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Butow RA, Narayan GA (2004) Mitochondrial signaling: the retrograde response. Mol Cell 14:1–15

    Article  CAS  PubMed  Google Scholar 

  • Castillo A, Atienza SG, Martín AC (2014) Fertility of CMS wheat is restored by two Rf loci located on a recombined acrocentric chromosome. J Exp Bot 65:6667–6677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarellic M (2008) Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 20(7):1760–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chase CD (2007) Cytoplasmic male sterility: a window to the world of plant mitochondrial-nuclear interactions. Trends Genet 23:81–90

    Article  CAS  PubMed  Google Scholar 

  • Chase CD, Gabay-Laughnan S (2004) Cytoplasmic male sterility and fertility restoration by nuclear genes. In: Daniell H, Chase CD (ed) Molecular biology and biotechnology of plant organelles. Springer, New York, pp 593–622

    Chapter  Google Scholar 

  • Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    Article  CAS  PubMed  Google Scholar 

  • Chen X (2005) microRNA biogenesis and function in plants. FEBS Lett 579:5923–5931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Liu YG (2014) Male sterility and fertility restoration in crops. Annu Rev Plant Biol 65:579–606

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Zheng Y, Qin L et al (2016) Identification of miRNAs and their targets through high-throughput sequencing and degradome analysis in male and female Asparagus officinalis. BMC Plant Biol 16:80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Z, Zhao N, Li S et al (2017) Plant mitochondrial genome evolution and cytoplasmic male sterility. Crit Rev Plant Sci 36:55–69

    Article  Google Scholar 

  • Choubey A, Rajam MV (2015) Organellar Genomes of Flowering Plants. In: Bahadur B, Venkat Rajam M, Sahijram L, Krishnamurthy K (eds) Plant biology and biotechnology. Springer, New Delhi

    Google Scholar 

  • Crespi MD, Jurkevitch E, Poiret M et al (1994) enod40, a gene expressed during nodule organogenesis, codes for a non-translatable RNA involved in plant growth. EMBO J 13:5099

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui X, Wise RP, Schnable PS (1996) The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science 272(5266):1334–1336

    Article  CAS  PubMed  Google Scholar 

  • Cuperus JT, Fahlgren N, Carrington JC (2011) Evolution and functional diversification of MIRNA genes. Plant Cell 23:431–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahan J, Mireau H (2013) The Rf and Rf-like PPR in higher plants, a fast-evolving subclass of PPR genes. RNA Biol 10:1469–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai XY, Yu JI, Zhao Q, Zhu DY, Ao GM (2004) Non-coding RNA for ZM401, a pollen-specific Gene of Zea Mays. Acta Bot Sin 46:497–504

    CAS  Google Scholar 

  • Delannoy E, Stanley WA, Bond CS, Small ID (2007) Pentatricopeptide repeat (PPR) proteins as sequence-specificity factors in post-transcriptional processes in organelles. Biochem Soc Trans 35:1643–1647

    Article  CAS  PubMed  Google Scholar 

  • Ding J, Zhou S, Guan J (2012a) Finding MicroRNA targets in plants: current status and perspectives. Genom Proteom Bioinform 10:264–275

    Article  CAS  Google Scholar 

  • Ding J, Lu Q, Ouyang Y et al (2012b) A long non-coding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl Acad Sci USA 109:2654–2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding X, Li J, Zhang H et al (2016) Identification of miRNAs and their targets by high throughput sequencing and degradome analysis in cytoplasmic male-sterile line NJCMS1A and its maintainer NJCMS1B of soybean. BMC Genom 17:24

    Article  CAS  Google Scholar 

  • Ekimler S, Sahin K (2014) Computational methods for micro-RNA target prediction. Genes (Basel) 5:671–683

    Article  CAS  Google Scholar 

  • Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan Y, Yang J, Mathioni SM et al (2016) PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proc Natl Acad Sci USA 113(52):15144–15149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang YN, Zheng BB, Wang L et al (2016) High-throughput sequencing and degradome analysis reveal altered expression of miRNAs and their targets in a male-sterile cybrid pummelo (Citrus grandis). BMC Genom 17:591

    Article  CAS  Google Scholar 

  • Fei Q, Yang L, Liang W, Zhang D, Meyers BC (2016) Dynamic changes of small RNAs in rice spikelet development reveal specialized reproductive phasi-RNA pathways. J Exp Bot 67:6037–6049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felippes FF, Weigel D (2009) Triggering the formation of tasiRNAs in Arabidopsis thaliana: the role of microRNA miR173. EMBO Rep 10:264–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field S, Thompson B (2016) Analysis of the maize dicer-like1 mutant, fuzzy tassel, implicates microRNAs in anther maturation and dehiscence. PLoS One 11:e0146534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Filipowicz W, Jaskiewicz L, Kolb FA, Pillai RS (2005) Post-transcriptional gene silencing by siRNAs and miRNAs. Curr Opin Struct Biol 15:331–341

    Article  CAS  PubMed  Google Scholar 

  • Floyd SK, Bowman JL (2004) Gene regulation: ancient microRNA target sequences in plants. Nature 428:485–486

    Article  CAS  PubMed  Google Scholar 

  • Franco-Zorrilla JM, Valli A, Todesco M et al (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genet 39:1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Fujii S, Toriyama K (2008) Genome barriers between nuclei and mitochondria exemplified by cytoplasmic male sterility. Plant Cell Physiol 49:1484–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii S, Toriyama K (2009) Suppressed expression of RETROGRADE-REGULATED MALE STERILITY restores pollen fertility in cytoplasmic male sterile rice plants. Proc Natl Acad Sci USA 106:9513–9518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii S, Toda T, Kikuchi S, Suzuki R, Yokoyama K, Tsuchida H, Yano K, Toriyama K (2011) Transcriptome map of plant mitochondria reveals islands of unexpected transcribed regions. BMC Genom 12:279

    Article  Google Scholar 

  • Gaborieau L, Brown GG, Mireau H (2016) The Propensity of Pentatricopeptide repeat genes to evolve into restorers of cytoplasmic male sterility. Front Plant Sci 7:1816

    Article  PubMed  PubMed Central  Google Scholar 

  • Grant-Downton R, Rodriguez-Enriquez J (2012) Emerging roles for non-coding RNAs in male reproductive development in flowering plants. Biomolecules 2:608–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grant-Downton R, Le Trionnaire G, Schmid R et al (2009) MicroRNA and tasiRNA diversity in mature pollen of Arabidopsis thaliana. BMC Genom 10:643

    Article  CAS  Google Scholar 

  • Grelon M, Budar F, Bonhomme S, Pelletier G (1994) Ogura cytoplasmic male-sterility (CMS)—associated orf 138 is translated into a mitochondrial membrane polypeptide in male-sterile Brassica cybrids. Mol Gen Genet 243:540–547

    Article  CAS  PubMed  Google Scholar 

  • Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144

  • Griffiths-Jones S, Saini HK, Dongen SV, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

  • Gunnery S, Datta A (1987) An inhibitor RNA of translation from Barley embryo. Biochem Biophys Res Comm 142:383–388

    Article  CAS  PubMed  Google Scholar 

  • Hanson MR, Bentolila S (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16:S154–S169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He L, Hannon GJ (2004) Small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Jackson S (2015) Floral induction and flower formation–the role and potential applications of miRNAs. Plant Biotechnol J 13:282–292

    Article  CAS  PubMed  Google Scholar 

  • Horn R, Gupta KJ, Colombo N (2014) Mitochondrion role in molecular basis of cytoplasmic male sterility. Mitochondrion 19 Pt B: 198–205

  • Hu J, Huang W, Huang Q et al (2014a) Mitochondria and cytoplasmic male sterility in plants. Mitochondrion 19:282–288

    Article  CAS  PubMed  Google Scholar 

  • Hu JY, Zhou Y, He F et al (2014b) miR824-regulated AGAMOUS-LIKE16 contributes to flowering time repression in Arabidopsis. Plant cell 26:2024–2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang JZ, E ZG, Zhang HL, Shu QY (2014) Workable male sterility systems for hybrid rice: genetics, biochemistry, molecular biology, and utilization. Rice (NY) 7:13

    Article  Google Scholar 

  • Iglesias MJ, Terrile MC, Windels D et al (2014) MiR393 regulation of auxin signaling and redox related components during acclimation to salinity in Arabidopsis. PLoS One 9:e107678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K (2001) The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13:2191–2210

  • Itabashi E, Iwata N, Fujii S, Kazama T, Toriyama K (2011) The fertility restorer gene, Rf2, for Lead Rice-type cytoplasmic male sterility of rice encodes a mitochondrial glycine-rich protein. Plant J 65(3):359 – 67

  • Iwakawa HO, Tomari Y (2015) The functions of microRNAs: mRNA decay and translational repression. Trends Cell Biol 25:651–665

    Article  CAS  PubMed  Google Scholar 

  • Jabnoune M, Secco D, Lecampion C, Robaglia C, Shu QY, Poirier Y (2013) A rice cis-natural antisense RNA acts as a translational enhancer for its cognate mRNA and contributes to phosphate homeostasis and plant fitness. Plant Cell 25:4166–4182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia Y, Liu W, Li A, Yang L, Zhan X (2009) Intrinsic noise in post-transcriptional gene regulation by small non-coding RNA. Biophys Chem 143: 60–69

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress induced miRNA. Mol Cell 14:787–799

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Kamthan A, Chaudhuri A, Kamthan M, Datta A (2015) Small RNAs in plants: recent development and application for crop improvement. Front Plant Sci 6:208

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang C, Liu Z (2015) Global identification and analysis of long non-coding RNAs in diploid strawberry Fragaria vesca during flower and fruit development. BMC Genom 16:815

    Article  CAS  Google Scholar 

  • Kapranov P, Cheng J, Dike S et al (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316:1484–1488

    Article  CAS  PubMed  Google Scholar 

  • Khemka N, Singh VK, Garg R, Jain M (2016) Genome-wide analysis of long intergenic non-coding RNAs in chickpea and their potential role in flower development. Sci Rep 6:33297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152-D157

    Article  CAS  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68-D73

    Article  CAS  Google Scholar 

  • Krishnasamy S, Makaroff CA (1993) Characterization of the radish mitochondrial orf B locus: possible relationship with male sterility Ogura radish. Curr Genet 24:156–163

    Article  CAS  PubMed  Google Scholar 

  • Laser KD, Lersten NR (1972) Anatomy and cytology of microsporogenesis in cytoplasmic male sterile angiosperms. Bot Rev 38:425–454

    Article  Google Scholar 

  • Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862

    Article  CAS  PubMed  Google Scholar 

  • Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Butow RA (2006) Mitochondrial retrograde signaling. Annu Rev Genet 40:159–185

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Wu S, Van Houten J et al (2014) Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNA 167 leads to floral development defects and female sterility in tomato. J Exp Bot 65:2507–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Hao L, Li D, Zhu L, Hu S (2015) Long non-coding RNAs and their biological roles in plants. Genom Proteom Bioinform 13:137–147

    Article  Google Scholar 

  • Liu X, Xu T, Dong X et al (2016) The role of gibberellins and auxin on the tomato cell layers in pericarp via the expression of ARFs regulated by miRNAs in fruit set. Acta Physiol Plant 38:1–11

    Article  CAS  Google Scholar 

  • Liu Z, Dong F, Wang X et al (2017) A pentatricopeptide repeat protein restores nap cytoplasmic male sterility in Brassica napus. J Exp Bot 68(15):4115–4123

    Article  PubMed  Google Scholar 

  • Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056

    Article  CAS  PubMed  Google Scholar 

  • Lurin C, Andrés C, Aubourg S et al (2004) Genome wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16(8):2089–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Yan B, Qu Y et al (2008) Zm401, a short-open reading-frame mRNA or noncoding RNA, is essential for tapetum and microspore development and can regulate the floret formation in maize. J Cell Biochem 105: 136 – 46

  • Ma Z, Jiang J, Hu Z, Lyu T, Yang Y, Jiang J et al (2017) Over-expression of miR158 causes pollen abortion in Brassica campestris ssp. chinensis. Plant Mol Biol 93:313–326

    Article  CAS  PubMed  Google Scholar 

  • Mateos JL, Bologna NG, Chorostecki U, Palatnik JF (2010) Identification of microRNA processing determinants by random mutagenesis of Arabidopsis MIR172a precursor. Curr Biol 20:49–54

    Article  CAS  PubMed  Google Scholar 

  • Matsuhira H, Kagami H, Kurata M et al (2012) Unusual and typical features of a novel restorer-of-fertility gene of sugar beet (Beta vulgaris L.). Genetics 192:1347–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mei M, Dai X, Xu C, Zhang Q (1999) Mapping and genetic analysis of the genes for photoperiod-sensitive genic male sterility in rice using the original mutant Nongken 58S. Crop Sci 39(6):1711–1715

    Article  CAS  Google Scholar 

  • Mette MF, vanderWinden J, Matzke M, Matzke AJ (2002) Short RNAs can identify new candidate transposable element families in Arabidopsis. Plant Physiol 130:6–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng DW, Zhang C, Miller M et al (2011) cis- and trans-Regulation of miR163 and target genes confers natural variation of secondary metabolites in two Arabidopsis species and their allopolyploids. Plant Cell 23:1729–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie S, Xu L, Wang Y et al (2015) Identification of bolting-related microRNAs and their targets reveals complex miRNA-mediated flowering-time regulatory networks in radish (Raphanus sativus L.). Sci Rep 5:14034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nosaka M, Itoh J, Nagato Y, Ono A, Ishiwata A, Sato Y (2012) Role of transposon-derived small RNAs in the interplay between genomes and parasitic DNA in rice. PLoS Genet 8:e1002953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Toole N, Hattori M, Andres C et al (2008) On the expansion of the pentatricopeptide repeat gene family in plants. Mol Biol Evol 25:1120–1128

    Article  PubMed  CAS  Google Scholar 

  • Oh TJ, Wartell RM, Cairney J, Pullman GS (2008) Evidence for stage-specific modulation of specific microRNAs (miRNAs) and miRNA processing components in zygotic embryo and female gametophyte of loblolly pine (Pinus taeda). New Phytol 179:67–80

    Article  CAS  PubMed  Google Scholar 

  • Omidvar V, Mohorianu I, Dalmay T, Fellner M (2015) Identification of miRNAs with potential roles in regulation of anther development and male sterility in 7B-1 male sterile tomato mutant. BMC Genom 28:878

    Article  CAS  Google Scholar 

  • Parikh VS, Morgan MM, Scott R, Clements LS, Butow RA (1987) The mitochondrial genotype can influence nuclear gene expression in yeast. Science 235:576–580

    Article  CAS  PubMed  Google Scholar 

  • Park W, Li J, Song R, Messing J, Chen X (2002) Carpel factory, a dicer homolog, and HEN1, a novel protein, actin microRNA metabolism in Arabidopsis thaliana. Curr Biol 12:1484–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS (2005) Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci USA 102:3691–3696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long non-coding RNAs. Cell 136:629–641

    Article  CAS  PubMed  Google Scholar 

  • Qin Z, Li C, Mao L, Wu L (2014) Novel insights from non-conserved microRNAs in plants. Front Plant Sci 5:586

    Article  PubMed  PubMed Central  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  CAS  PubMed  Google Scholar 

  • Rizzolatt C, Bury P, Tatara E et al. (2017) Map-based cloning of the fertility restoration locus Rfm1in cultivated barley (Hordeum vulgare). Euphytica. https://doi.org/10.1007/s10681-017-2056-4

  • Rogers K, Chen X (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25:2383–2399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ru P, Xu L, Ma H, Huang H (2006) Plant fertility defects induced by the enhanced expression of micro-RNA167. Cell Res 16: 457–465

    Article  CAS  PubMed  Google Scholar 

  • Rurek M (2016) Participation of non-coding RNAs in plant organelle biogenesis. Acta Biochim Pol 63(4):653–663

    Article  CAS  PubMed  Google Scholar 

  • Schmitz-Linneweber C, Small I (2008) Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci 13:663–670

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Springer NM (2013) Progress towards understanding heterosis in crop plants. Annu Rev Plant Biol 64:71–88

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Zhang Z, Lin H et al (2011) Cytoplasmic male sterility-regulated novel microRNAs from maize. Funct Integr Genom 11:179–191

    Article  CAS  Google Scholar 

  • Shen Y, Jiang Z, Lu S et al (2013) Combined small RNA and degradome sequencing reveals microRNA regulation during immature maize embryo de-differentiation. Biochem Biophys Res Commun 441:425–430

    Article  CAS  PubMed  Google Scholar 

  • Shen C, Zhang D, Guan Z et al (2016) Structural basis for specific single-stranded RNA recognition by designer pentatricopeptide repeat proteins. Nat Commun 7:11285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sieber P, Wellmer F, Gheyselinck J, Riechmann JL, Meyerowitz EM (2007) Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness. Development 134:1051–1060

    Article  CAS  PubMed  Google Scholar 

  • Small I, Peeters N (2000) The PPR motif e a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci 25:46–47

    Article  CAS  PubMed  Google Scholar 

  • Song JH, Cao JS, Yu XL, Xiang X (2007) BcMF11, a putative pollen specific non-coding RNA from Brassica campestris L. ssp. chinensis Makino. J Plant Physiol 164:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Song L, Axtell MJ, Fedoroff NV (2010) RNA secondary structural determinants of miRNA precursor processing in Arabidopsis. Curr Biol 20:37–41

    Article  CAS  PubMed  Google Scholar 

  • Song X, Li P, Zhai J et al (2012) Roles of DCL4 nd DCL3b in rice phased small RNA biogenesis. Plant J 69: 462–474

    Article  CAS  PubMed  Google Scholar 

  • Song J, Cao J, Wang C (2013) BcMF11, a novel non-coding RNA gene from Brassica campestris, is required for pollen development and male fertility. Plant Cell Rep 32:21–30

    Article  CAS  PubMed  Google Scholar 

  • Song X, Sun L, Luo H, Ma Q, Zhao Y, Pei D (2016) Genome-wide identification and characterization of long non-coding RNAs from Mulberry (Morus notabilis). RNA-seq Data Genes 7:11

    Google Scholar 

  • Stone JD, Koloušková P, Sloan DB, Štorchová H (2017) Non-coding RNA may be associated with cytoplasmic male sterility in Silene vulgaris. J Exp Bot 68(7):1599–1612

    Article  PubMed  PubMed Central  Google Scholar 

  • Su Y, Liu Y, Zhou C, Ming Li X, Zhang X (2016) The microRNA167 controls somatic embryogenesis in Arabidopsis through regulating its target genes ARF6 and ARF8. Plant Cell Tiss Org 124:405–417

    Article  CAS  Google Scholar 

  • Sun RR, Wang QL, Ma J, He QL, Zhang B (2014) Differentiated expression of microRNAs may regulate genotype-dependent traits in cotton. Gene 547:233–238

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Jagadeeswaran G (2008) In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol 8:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szcześniak MW, Deorowicz S, Gapski J, Kaczynski L, Makalowska I (2012) miRNEST database: an integrative approach in microRNA search and annotation. Nucleic Acid Res 40:D 198–204

    Article  CAS  Google Scholar 

  • Szcześniak MW, Rosikiewicz W, Makalowska I (2015) CANTATAdb: a collection of plant long non-coding RNAs. Plant Cell Physiol 57:e8(1–7)

    Google Scholar 

  • Ta KN, Sabot F, Adam H (2016) miR2118-triggered phased siRNAs are differentially expressed during the panicle development of wild and domesticated African rice species. Rice (N Y) 9:10

    Article  CAS  PubMed Central  Google Scholar 

  • Tang H, Luo D, Zhou D et al (2014) The rice restorer Rf4 for wild-abortive cytoplasmic male sterility encodes a mitochondrial-localized PPR protein that functions in reduction of WA352 transcripts. Mol Plant 7:1497–1500

    Article  CAS  PubMed  Google Scholar 

  • Touzet P, Budar F (2004) Unveiling the molecular arms race between two conflicting genomes in cytoplasmic male sterility? Trends Plant Sci 9:568–570

  • Vedel F, Pla M, Vitart V, Gutierres S, Ch´etrit P, De Paepe R (1994) Molecular basis of nuclear and cytoplasmic male sterility in higher plants. Plant Physiol Biochem 32:601–608

    CAS  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687

    Article  CAS  PubMed  Google Scholar 

  • Wang XJ, Reyes JL, Chua NH, Gaasterland T (2004) Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol 5:R65

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Zou Y, Li X et al (2006) Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell 18:676–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei LQ, Yan LF, Wang T (2011) Deep sequencing on genome-wide scale reveals the unique composition and expression patterns of microRNAs in developing pollen of Oryza sativa. Genom Biol 12:R53

    Article  CAS  Google Scholar 

  • Wei M, Wei H, Wu M et al (2013) Comparative expression profiling of miRNA during anther development in genetic male sterile and wild type cotton. BMC Plant Biol 13:66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei X, Zhang X, Yao Q et al (2015) The miRNAs and their regulatory networks responsible for pollen abortion in Ogura-CMS Chinese cabbage revealed by high-throughput sequencing of miRNAs, degradomes, and transcriptomes. Front Plant Sci 6:894

    PubMed  PubMed Central  Google Scholar 

  • Werner S, Wollmann H, Schneeberger K, Weigel D (2010) Structure determinants for accurate processing of miR172a in Arabidopsis thaliana. Curr Biol 20: 42–48

    Article  CAS  PubMed  Google Scholar 

  • Williams L, Grigg SP, Xie M, Christensen S, Fletcher JC (2005) Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development 132:3657–3668

    Article  CAS  PubMed  Google Scholar 

  • Wu MF, Tian Q, Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133:4211–4218

    Article  CAS  PubMed  Google Scholar 

  • Xia T, Liu JL (1994) Study on the relation between auxin, zeatin and cytoplasmic male sterility in maize (Zea mays L.). Acta Agron Sin 20:26–31

    Google Scholar 

  • Xiao Y, Xia W, Yang Y, Mason AS, Lei X, Ma Z (2013) Characterization and evolution of conserved microRNA through duplication events in date palm (Phoenix dactylifera). PLoS One 8:e71435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie F, Zhang B (2010) Target-align: a tool for plant microRNA target identification. Bioinformatics 26:3002–3003

    Article  CAS  PubMed  Google Scholar 

  • Xing S, Salinas M, Höhmann S, Berndtgen R, Huijser P (2010) miR156-Targeted and non-targeted SBP-Box transcription factors act in concert to secure male fertility in Arabidopsis[W][OA]. Plant Cell 22:3935–3950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xuemei C (2008) MicroRNA metabolism in plants. Curr Top Microbiol Immunol 320:117–136

    Google Scholar 

  • Yamagishi H, Bhat SR (2014) Cytoplasmic male sterility in Brassicaceae crops. Breed Sci 64:38–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan K, Liu P, Wu CA et al (2012) Stress-induced alternative splicing provides a mechanism for the regulation of microRNA processing in Arabidopsis thaliana. Mol Cell 48:521–531

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Wang H, Hamera S, Chen X, Fang R (2014) miR444a has multiple functions in the rice nitrate-signaling pathway. Plant J 78:44–55

    Article  CAS  PubMed  Google Scholar 

  • Yang WC, Katinakis P, Hendriks P et al (1993) Characterization of GmENOD40, a gene showing novel patterns of cell-specific expression during soybean nodule development. Plant J 3:573–585

    Article  CAS  PubMed  Google Scholar 

  • Yang JH, Han SJ, Yoon EK, Lee WS (2006) Evidence of an auxin signal pathway, microRNA167- ARF8-GH3, and its response to exogenous auxin in cultured rice cells. Nucleic Acids Res 34:1892–1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Liu X, Xu B, Zhao N, Yang X, Zhang M (2013) Identification of miRNAs and their targets using high-throughput sequencing and degradome analysis in cytoplasmic male-sterile and its maintainer fertile lines of Brassica juncea. BMC Genom 14:9

    Article  CAS  Google Scholar 

  • Yang X, Zhao Y, Xie D et al (2016) Identification and functional analysis of micro-RNAs involved in the anther development in cotton genic male sterile line Yu98–8A. Int J Mol Sci 17:E1677

    Article  PubMed  CAS  Google Scholar 

  • Yasumoto K, Terachi T, Yamagishi H (2009) A novel Rf gene controlling fertility restoration of Ogura male sterility by RNA processing of orf138 found in Japanese wild radish and its STS markers. Genome 52:495–504

    Article  CAS  PubMed  Google Scholar 

  • Yin P, Li Q, Yan C et al (2013) Structural basis for the modular recognition of single-stranded RNA by PPR proteins. Nature 504(7478):168 – 71

  • Yoshikawa M, Peragine A, Park MY, Poethig RS (2005) A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19(18):2164–2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai L, Xu L, Wang Y et al (2016) Transcriptional identification and characterization of differentially expressed genes associated with embryogenesis in radish (Raphanus sativus L.). Sci Rep 6:21652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang ZB, Zhu J, Gao JF et al (2007) Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis. Plant J 52(3):528–538

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZW, Zhang GC, Zhu F, Zhang DW, Yuan S (2012a) The roles of tetrapyrroles in plastid retrograde signaling and tolerance to environmental stresses. Planta 242:1263–1276

    Article  CAS  Google Scholar 

  • Zhang JH, Zhang SG, Han SY et al (2012b) Genome-wide identification of microRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis. Planta 236:647–657

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Xie Y, Xu L et al (2016) Identification of microRNAs and their target genes explores miRNA mediated regulatory network of cytoplasmic male sterility occurenc during anther development in Radish (Raphanus sativus L.). Front Plant Sci 7:1054

    PubMed  PubMed Central  Google Scholar 

  • Zhou GK, Kubo M, Zhong R, Demura T, Ye ZH (2007) Overexpression of miR165 affects apical meristem formation, organ polarity establishment and vascular development in Arabidopsis. Plant Cell Physiol 48:391–404

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Liu Q, Li J et al (2012) Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel non-coding RNA that produces a small RNA. Cell Res 4: 649–660

    Article  CAS  Google Scholar 

  • Zhu D, Deng WX (2012) A non-coding RNA locus mediates environment-conditioned male sterility in rice. Cell Res 22:791–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu QH, Helliwell CA (2011) Regulation of flowering time and floral patterning by miR172. J Exp Bot 62: 487–495

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors acknowledge support from Indian Council of Agricultural Research (ICAR), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Bohra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Neal Stewart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A., Bohra, A. Non-coding RNAs and plant male sterility: current knowledge and future prospects. Plant Cell Rep 37, 177–191 (2018). https://doi.org/10.1007/s00299-018-2248-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-018-2248-y

Keywords

Navigation