Skip to main content
Log in

Mild osmotic stress promotes 4-methoxy indolyl-3-methyl glucosinolate biosynthesis mediated by the MKK9–MPK3/MPK6 cascade in Arabidopsis

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

MKK9–MPK3/MPK6 cascade positively regulates IGSs’ biosynthetic genes.

Abstract

Glucosinolates (GSs), secondary metabolites well known for their roles in plant defense, have been implicated to play an important role in plant abiotic stress response; however, the exact role in these processes and the underlying regulatory mechanisms remain elusive. Mitogen-activated protein kinase (MAPK) cascades are extensively involved in plant abiotic stress response. In this study, we examined the levels of four indolic glucosinolates (IGSs) in the shoots of Arabidopsis seedlings under mild osmotic stress conditions and found that 4-methoxy indolyl-3-methyl glucosinolate (4MI3G) accumulated and that MPK3 and MPK6 were activated. Loss of MPK3 or MPK6 function led to a reduction in mild osmotic stress-induced 4MI3G. Further analyses revealed that MKK9 acts upstream of MPK3 and MPK6 to promote 4MI3G accumulation. The level of 4MI3G induced by mild osmotic stress was reduced in the mkk9 mutant. Conversely, 4MI3G increased in MKK9 DD, a constitutively activate mutant of MKK9. Gene expression analyses indicated that the activated MKK9–MPK3/MPK6 cascade upregulates the IGS biosynthetic genes. Moreover, the lack of MYB51, the transcription factor controlling biosynthetic genes responsible for synthesizing the IGS core structure, or CYP81F2, the enzyme catalyzing core structure modification to 4MI3G, significantly reduced mild osmotic stress- and MKK9 DD-induced 4MI3G. Thus, our study demonstrates that mild osmotic stress promotes 4MI3G biosynthesis and the accumulation in Arabidopsis through activation of the MKK9–MPK3/MPK6 cascade and provides an MAPK-mediated signaling pathway for the IGS response to abiotic stress in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agerbirk N, De Vos M, Kim JH, Jander G (2009) Indole glucosinolate breakdown and its biological effects. Phytochem Rev 8:101–120

    Article  CAS  Google Scholar 

  • Alvarez E, Northwood IC, Gonzalez FA, Latour DA, Seth A, Abate C, Curran T, Davis RJ (1991) Pro-Leu-Ser/Thr-Pro is a consensus primary sequence for substrate protein phosphorylation. J Biol Chem 266:15277–15285

    CAS  PubMed  Google Scholar 

  • Arbona V, Manzi M, Ollas C, Gomez-Cadenas A (2013) Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int J Mol Sci 14:4885–4911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barth C, Jander G (2006) Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. Plant J 46:549–562

    Article  CAS  PubMed  Google Scholar 

  • Bednarek P, Osbourn A (2009) Plant–microbe interactions: chemical diversity in plant defense. Science 324:746–748

    Article  CAS  PubMed  Google Scholar 

  • Boudsocq M, Lauriere C (2005) Osmotic signaling in plants: multiple pathways mediated by emerging kinase families. Plant Physiol 138:1185–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62:471–481

    Article  CAS  PubMed  Google Scholar 

  • Claeys H, Inze D (2013) The agony of choice: how plants balance growth and survival under water-limiting conditions. Plant Physiol 162:1768–1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claeys H, Van Landeghem S, Dubois M, Maleux K, Inzé D (2014) What is stress? Dose–response effects in commonly used in vitro stress assays. Plant Physiol 165:519–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke DB (2010) Glucosinolates, structures and analysis in food. Anal Meth 2:310–325

    Article  CAS  Google Scholar 

  • Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM (2009) Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95–101

    Article  CAS  PubMed  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  CAS  PubMed  Google Scholar 

  • Droillard MJ, Thibivilliers S, Cazale AC, Barbier-Brygoo H, Lauriere C (2000) Protein kinases induced by osmotic stresses and elicitor molecules in tobacco cell suspensions: two crossroad MAP kinases and one osmoregulation-specific protein kinase. FEBS Lett 474:217–222

    Article  CAS  PubMed  Google Scholar 

  • Droillard M, Boudsocq M, Barbier-Brygoo H, Lauriere C (2002) Different protein kinase families are activated by osmotic stresses in Arabidopsis thaliana cell suspensions. FEBS Lett 527:43–50

    Article  CAS  PubMed  Google Scholar 

  • Droillard M, Boudsocq M, Barbierbrygoo H, Lauriere C (2004) Involvement of MPK4 in osmotic stress response pathways in cell suspensions and plantlets of Arabidopsis thaliana: activation by hypoosmolarity and negative role in hyperosmolarity tolerance. FEBS Lett 574:42–48

    Article  CAS  PubMed  Google Scholar 

  • Frerigmann H, Gigolashvili T (2014) MYB34, MYB51, and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana. Mol Plant 7:814–828

    Article  CAS  PubMed  Google Scholar 

  • Fujii H, Verslues PE, Zhu JK (2011) Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proc Natl Acad Sci USA 108:1717–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gigolashvili T, Berger B, Mock HP, Muller C, Weisshaar B, Flugge UI (2007a) The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. Plant J 50:886–901

  • Gigolashvili T, Yatusevich R, Berger B, Müller C, Flügge U (2007b) The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Plant J 51:247–261

  • Gigolashvili T, Engqvist MKM, Yatusevich R, Muller C, Flugge U (2008) HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. New Phytol 177:627–642

    Article  CAS  PubMed  Google Scholar 

  • Gigolashvili T, Berger B, Flugge UI (2009) Specific and coordinated control of indolic and aliphatic glucosinolate biosynthesis by R2R3-MYB transcription factors in Arabidopsis thaliana. Phytochem Rev 8:3–13

    Article  CAS  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:151–160

    Article  PubMed  PubMed Central  Google Scholar 

  • Harb A, Krishnan A, Ambavaram MMR, Pereira A (2010) Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol 154:1254–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, Araki R, Sakurai N, Suzuki H, Aoki K, Goda H, Nishizawa OI, Shibata D, Saito K (2007) Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci USA 104:6478–6483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkins RJ, van Dam NM, van Loon JJ (2009) Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu Rev Entomol 54:57–83

    Article  CAS  PubMed  Google Scholar 

  • Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J 24:655–665

    Article  CAS  PubMed  Google Scholar 

  • Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y, Champion A, Kreis M, Zhang SQ, Hirt H, Wilson C, Heberle-Bors E, Ellis BE, Morris PC, Innes RW, Ecker JR, Scheel D, Klessig DF, Machida Y, Mundy J, Ohashi Y, Walker JC, Grp M (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7:301–308

    Article  CAS  Google Scholar 

  • Khan M, Ulrichs C, Mewis I (2010) Influence of water stress on the glucosinolate profile of Brassica oleracea var. italica and the performance of Brevicoryne brassicae and Myzus persicae. Entomol Exp App 137: 229–236

    Article  CAS  Google Scholar 

  • Kiddle G, Bennett RN, Botting NP, Davidson NE, Robertson AAB, Wallsgrove RM (2001) High-performance liquid chromatographic separation of natural and synthetic desulphoglucosinolates and their chemical validation by UV, NMR and chemical ionisation-MS methods. Phytochem Anal 12:226–242

    Article  CAS  PubMed  Google Scholar 

  • Kliebenstein DJ, Kroymann J, Brown P, Figuth A, Pedersen D, Gershenzon J, Mitchell-Olds T (2001) Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol 126:811–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ksouri R, Megdiche W, Debez A, Falleh H, Grignon C, Abdelly C (2007) Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol Biochem 45:244–249

    Article  CAS  PubMed  Google Scholar 

  • Lassowskat I, Bottcher C, Eschen-Lippold L, Scheel D, Lee J (2014) Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana. Front Plant Sci 5:554–574

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawlor DW (2013) Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. J Exp Bot 64:83–108

    Article  CAS  PubMed  Google Scholar 

  • Lei L, Li Y, Wang Q, Xu J, Chen Y, Yang H, Ren D (2014) Activation of MKK9-MPK3/MPK6 enhances phosphate acquisition in Arabidopsis thaliana. New Phytol 203:1146–1160

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhang S (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16:3386–3399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Gitz DC, Mcclure JW (1995) Effects of UV-B on flavonoids, ferulic acid, growth and photosynthesis in barley primary leaves. Physiol Plant 93:725–733

    Article  CAS  Google Scholar 

  • Lu C, Han M-H, Guevara-Garcia A, Fedoroff NV (2002) Mitogen-activated protein kinase signaling in postgermination arrest of development by abscisic acid. Proc Natl Acad Sci USA 99:15812–15817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malitsky S, Blum E, Less H, Venger I, Elbaz M, Morin S, Eshed Y, Aharoni A (2008) The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators. Plant Physiol 148:2021–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mewis I, Khan MA, Glawischnig E, Schreiner M, Ulrichs C (2012) Water stress and aphid feeding differentially influence metabolite composition in Arabidopsis thaliana (L.). PLoS One 7:e48661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikolajczyk M, Awotunde OS, Muszynska G, Klessig DF, Dobrowolska G (2000) Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. Plant Cell 12:165–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Pfalz M, Vogel H, Kroymann J (2009) The gene controlling the indole glucosinolate modifier1 quantitative trait locus alters indole glucosinolate structures and aphid resistance in Arabidopsis. Plant Cell 21:985–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitzschke A, Schikora A, Hirt H (2009) MAPK cascade signalling networks in plant defence. Curr Opin Plant Biol 12:421–426

    Article  CAS  PubMed  Google Scholar 

  • Radovich TJK, Kleinhenz MD, Streeter JG (2005) Irrigation timing relative to head development influences yield components, sugar levels, and glucosinolate concentrations in cabbage. J Am Soc Horticult Sci 130:943–949

    CAS  Google Scholar 

  • Ramakrishna A, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6:1720–1731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez MC, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649

    Article  CAS  PubMed  Google Scholar 

  • Rymen B, Sugimoto K (2012) Tuning growth to the environmental demands. Curr Opin Plant Biol 15:683–690

    Article  PubMed  Google Scholar 

  • Schreiner M, Beyene B, Krumbein A, Stutzel H (2009) Ontogenetic changes of 2-propenyl and 3-indolylmethyl glucosinolates in Brassica carinata leaves as affected by water supply. J Agric Food Chem 57:7259–7263

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Villamor JG, Verslues PE (2011) Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential. Plant Physiol 157:292–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skirycz A, De Bodt S, Obata T, De Clercq I, Claeys H, De Rycke R, Andriankaja M, Van Aken O, Van Breusegem F, Fernie AR, Inzé D (2010) Developmental stage specificity and the role of mitochondrial metabolism in the response of Arabidopsis leaves to prolonged mild osmotic stress. Plant Physiol 152:226–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skirycz A, Claeys H, De Bodt S, Oikawa A, Shinoda S, Andriankaja M, Maleux K, Eloy NB, Coppens F, Yoo SD, Saito K, Inze D (2011) Pause-and-stop: the effects of osmotic stress on cell proliferation during early leaf development in Arabidopsis and a role for ethylene signaling in cell cycle arrest. Plant Cell 23:1876–1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sønderby IE, Burow M, Rowe HC, Kliebenstein DJ, Halkier BA (2010a) A complex interplay of three R2R3 MYB transcription factors determines the profile of aliphatic glucosinolates in Arabidopsis. Plant Physiol 153:348–363

  • Sønderby IE, Geu-Flores F, Halkier BA (2010b) Biosynthesis of glucosinolates—gene discovery and beyond. Trends Plant Sci 15:283–290

  • Sorensson C, Lenman M, Veidevilg J, Schopper S, Ljungdahl T, Grotli M, Tamas MJ, Peck SC, Andreasson E (2012) Determination of primary sequence specificity of Arabidopsis MAPKs MPK3 and MPK6 leads to identification of new substrates. Biochem J 446:271–278

    Article  PubMed  Google Scholar 

  • Stotz HU, Sawada Y, Shimada Y, Hirai MY, Sasaki E, Krischke M, Brown PD, Saito K, Kamiya Y (2011) Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum. Plant J 67:81–93

    Article  CAS  PubMed  Google Scholar 

  • Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, Yonezawa M, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K (2007) The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell 19:805–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teige M, Scheikl E, Eulgem T, Doczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:141–152

    Article  CAS  PubMed  Google Scholar 

  • Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verslues PE, Zhu J (2007) New developments in abscisic acid perception and metabolism. Curr Opin Plant Biol 10:447–452

    Article  CAS  PubMed  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu J (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539

    Article  CAS  PubMed  Google Scholar 

  • Wittstock U, Halkier BA (2002) Glucosinolate research in the Arabidopsis era. Trends Plant Sci 7:263–270

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Zhang S (2015) Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends Plant Sci 20:56–64

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Li Y, Wang Y, Liu H, Lei L, Yang H, Liu G, Ren D (2008) Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J Biol Chem 283:26996–27006

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Meng J, Meng X, Zhao Y, Liu J, Sun T, Liu Y, Wang Q, Zhang S (2016) Pathogen-responsive MPK3 and MPK6 reprogram the biosynthesis of indole glucosinolates and their derivatives in Arabidopsis immunity. Plant Cell 28:1144–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida T, Mogami J, Yamaguchishinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21:133–139

    Article  CAS  PubMed  Google Scholar 

  • Yuan G, Wang X, Guo R, Wang Q (2010) Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chem 121:1014–1019

    Article  CAS  Google Scholar 

  • Yuan F, Yang H, Xue Y, Kong D, Ye R, Li C, Zhang J, Theprungsirikul L, Shrift T, Krichilsky B, Johnson DM, Swift GB, He Y, Siedow JN, Pei Z (2014) OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514:367–371

    Article  CAS  PubMed  Google Scholar 

  • Zhu J (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31000127) to Li Y. We thank Dr. Juergen Kroymann for cyp81f2 mutant seeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Q. Zhao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Wang, C., Zhu, F. et al. Mild osmotic stress promotes 4-methoxy indolyl-3-methyl glucosinolate biosynthesis mediated by the MKK9–MPK3/MPK6 cascade in Arabidopsis . Plant Cell Rep 36, 543–555 (2017). https://doi.org/10.1007/s00299-017-2101-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-017-2101-8

Keywords

Navigation