Skip to main content
Log in

Global transcriptome profiling analysis reveals insight into saliva-responsive genes in alfalfa

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

We studied the genome-wide multiple time-course transcriptome dynamics after saliva deposition in alfalfa and demonstrate that saliva deposition functions as a stress that negatively affects the regrowth of alfalfa.

Abstract

Saliva deposition is one of the key factors influencing plant-herbivore interactions during grazing. Although many studies have focused on the effects of saliva deposition on plant regrowth, no consistent conclusions have been reached. Alfalfa is the most extensively cultivated forage legume, yet most alfalfa cultivars, thus far, are not grazing-tolerant. To better understand the underlying mechanism, we undertook a study to evaluate the global changes in the transcriptome of alfalfa after cow saliva deposition treatment. In this study, cDNA libraries from alfalfa seedlings at 0, 4, 8, and 24 h after cow saliva deposition were constructed and sequenced, resulting in the identification of 53,195 annotated unigenes, from which 4,814 unigenes were significantly differentially expressed. A metabolic pathway enrichment analysis demonstrated that saliva deposition functions as a stress that negatively affects the regrowth of alfalfa by modifying jasmonic acid synthesis, enhancing the susceptibility to pathogens and reducing the expression levels of ribosomal protein genes. In the present study, we demonstrate the potential effects of saliva deposition on alfalfa regrowth at the transcriptome level. These fundamental and important findings could facilitate further investigations into the molecular mechanisms underlying the responses of alfalfa and other related species to herbivore grazing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrawal AA (2000) Overcompensation of plants in response to herbivory and the by-product benefits of mutualism. Trends Plant Sci 5:309–313

    Article  CAS  PubMed  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aziz N, Paiva NL, May GD, Dixon RA (2005) Transcriptome analysis of alfalfa glandular trichomes. Planta 221:28–38

    Article  CAS  PubMed  Google Scholar 

  • Bai B, Wu J, Sheng WT, Zhou B, Zhou LJ, Zhuang W, Yao DP, Deng QY (2015) Comparative analysis of anther transcriptome profiles of two different rice male sterile lines genotypes under cold stress. Int J Mol Sci 16:11398–11416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bergman M (2002) Can saliva from moose, Alces alces, affect growth responses in the sallow, Salix caprea? Oikos 96:164–168

    Article  Google Scholar 

  • Capinera JL, Roltsch WJ (1980) Response of wheat seedlings to actual and simulated migratory grasshopper defoliation. J Econ Entomol 73:258–261

    Article  Google Scholar 

  • Chen SY, Li XQ, Zhao A, Wang LJ, Li XF, Shi QY, Chen M, Guo J, Zhang JC, Qi DM, Liu GS (2009) Genes and pathways induced in early response to defoliation in rice seedlings. Curr Issues Mol Biol 11:81–100

    CAS  PubMed  Google Scholar 

  • Chen P, Ran SM, Li R, Huang Z, Qian JH, Yu ML, Zhou RY (2014a) Transcriptome de novo assembly and differently expressed genes related to cytoplasmic male sterility in kenaf (Hibiscus cannabinus L.). Mol Breeding 34:1879–1891

    Article  CAS  Google Scholar 

  • Chen SY, Cai YY, Zhang LX, Yan XQ, Cheng LQ, Qi DM, Zhou QY, Li XX, Liu GS (2014b) Transcriptome analysis reveals common and distinct mechanisms for sheepgrass (Leymus chinensis) responses to defoliation compared to mechanical wounding. PLoS One 9:e89495

    Article  PubMed Central  PubMed  Google Scholar 

  • Cohen S (1962) Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J Biol Chem 237:1555–1562

    CAS  PubMed  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Crawley MJ (1987) Benevolent herbivores? Trends Ecol Evol 2:167–168

    Article  CAS  PubMed  Google Scholar 

  • Detling JK, Ross CW, Walmsley MH, Hilbert DW, Bonilla CA, Dyer MI (1981) Examination of North American bison saliva for potential plant growth regulators. J Chem Ecol 7:239–246

    Article  CAS  PubMed  Google Scholar 

  • Ding XH, Cao YL, Huang LL, Zhao J, Xu CG, Li XH, Wang SP (2008) Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell 20:228–240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Domingo C, Andres F, Tharreau D, Iglesias DJ, Talon M (2009) Constitutive expression of OsGH3.1 reduces auxin content and enhances defense response and resistance to a fungal pathogen in rice. Mol Plant Microbe In 22:201–210

    Article  CAS  Google Scholar 

  • Du Z, Zhou X, Ling Y, Zhang ZH, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:64–70

    Article  Google Scholar 

  • Ernst J, Bar-Joseph Z (2006) STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics 7:191

    Article  PubMed Central  PubMed  Google Scholar 

  • Fan WH, Cui WT, Li XF, Chen SY, Liu GS, Shen SH (2011) Proteomics analysis of rice seedling responses to ovine saliva. J Plant Physiol 168:500–509

    Article  CAS  PubMed  Google Scholar 

  • Garrido E, Andraca-Gómez G, Fornoni J (2012) Local adaptation: simultaneously considering herbivores and their host plants. New Phytol 193:445–453

    Article  PubMed  Google Scholar 

  • Gavloski JE, Lamb RJ (2000) Compensation by cruciferous plants is specific to the type of simulated herbivory. Environ Entomol 29:1273–1282

    Article  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han Y, Kang Y, Torres-Jerez I, Cheung F, Town CD, Zhao PX, Udvardi MK, Monteros MJ (2011) Genome-wide SNP discovery in tetraploid alfalfa using 454 sequencing and high resolution melting analysis. BMC Genom 12:350

    Article  CAS  Google Scholar 

  • Hjältén J (2004) Simulating herbivory: problems and possibilities. In: Weisser W, Siemann E (eds) Insects and ecosystem function. Springer, Berlin, pp 243–255

    Chapter  Google Scholar 

  • Huang X, Peng XJ, Zhang LX, Chen SY, Cheng LQ, Liu GS (2014) Bovine serum albumin in saliva mediates grazing response in Leymus chinensis revealed by RNA sequencing. BMC Genom 15:1126

    Article  Google Scholar 

  • Iseli C, Jongeneel CV, Bucher P (1999) ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. In: Lengauer T, Bork P, Brutlag D, Glasgow J, Mewes H-W, Zimmer R (eds) Proceeding of the seventh international conference on intelligent systems for molecular biology. AAAI press, Menlo park, CA, pp 138–148

  • Jain M, Tyagi AK, Khurana JP (2006) Genome-wide analysis, evolutionary expansion, and expression of early auxin-responsive SAUR gene family in rice (Oryza sativa). Genomics 88:360–371

    Article  CAS  PubMed  Google Scholar 

  • Kant S, Bi YM, Zhu T, Rothstein SJ (2009) SAUR39, a small auxin-up RNA gene, acts as a negative regulator of auxin synthesis and transport in rice. Plant Physiol 151:691–701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kessler A, Halitschke R, Baldwin IT (2004) Silencing the jasmonate cascade: induced plant defenses and insect populations. Science 305:665–668

    Article  CAS  PubMed  Google Scholar 

  • Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    Article  CAS  PubMed  Google Scholar 

  • Li EQ, Liu JS, Li XF, Xiang HY, Yu JP, Wang DL (2014) Animal saliva has stronger effects on plant growth than salivary components. Grass Forage Sci 69:153–159

    Article  CAS  Google Scholar 

  • Liu J, Wang L, Wang D, Bonser SP, Sun F, Zhou Y, Gao Y (2012) Plants can benefit from herbivory: stimulatory effects of sheep saliva on growth of Leymus chinensis. PLoS One 7:e29259

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu ZP, Chen TL, Ma LC, Zhao ZG, Zhao PX, Nan ZB, Wang YR (2013) Global transcriptome sequencing using the Illumina platform and the development of EST-SSR markers in autotetraploid alfalfa. PLoS One 8:e83549

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu WX, Zeng HM, Liu ZP, Yang XH, Guo LH, Qiu DW (2014) Mutational analysis of the Verticillium dahliae protein elicitor PevD1 identifies distinctive regions responsible for hypersensitive response and systemic acquired resistance in tobacco. Microbiol Res 169:476–482

    Article  CAS  PubMed  Google Scholar 

  • Lu XY, Kim H, Zhong SL, Chen HB, Hu ZQ, Zhou BY (2014) De novo transcriptome assembly for rudimentary leaves in Litchi chinesis Sonn. and identification of differentially expressed genes in response to reactive oxygen species. BMC Genom 15:805

    Article  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Mou HQ, Lu J, Zhu SF, Lin CL, Tian GZ, Xu X, Zhao WJ (2013) Transcriptomic analysis of Paulownia infected by paulownia witches’-Broom phytoplasma. PLoS One 8:e77217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nishimura T, Wada T, Yamamoto KT, Okada K (2005) The Arabidopsis STV1 protein, responsible for translation reinitiation, is required for auxin-mediated gynoecium patterning. Plant Cell 17:2940–2953

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pilson D, Decker KL (2002) Compensation for herbivory in wild sunflower: response to simulated damage by the head-clipping weevil. Ecology 83:3097–3107

    Article  Google Scholar 

  • Postnikova OA, Shao J, Nemchinov LG (2013) Analysis of the alfalfa root transcriptome in response to salinity stress. Plant Cell Physiol 54:1041–1055

    Article  CAS  PubMed  Google Scholar 

  • Reardon PO, Leinweber CL, Merrill LB (1974) Response of sideoats grama to animal saliva and thiamine. J Range Manage 27:400–401

    Article  Google Scholar 

  • Reddy PS, Kumar TC, Reddy MN, Sarada C, Reddanna P (2000) Differential formation of octadecadienoic acid and octadecatrienoic acid products in control and injured/infected potato tubers. BBA-Mol Cell Biol L 1483:294–300

    CAS  Google Scholar 

  • Ripoll G, Albertí P, Joy M (2012) Influence of alfalfa grazing-based feeding systems on carcass fat colour and meat quality of light lambs. Meat Sci 90:457–464

    Article  CAS  PubMed  Google Scholar 

  • Rooke T (2003) Growth responses of a woody species to clipping and goat saliva. Afr J Ecol 41:324–328

    Article  Google Scholar 

  • Schippers JHM, Mueller-Roeber B (2010) Ribosomal composition and control of leaf development. Plant Sci 179:307–315

    Article  CAS  Google Scholar 

  • Smith SR, Bouton JH, Singh A, McCaughey WP (2000) Development and evaluation of grazing-tolerant alfalfa cultivars: a review. Can J Plant Sci 80:503–512

    Article  Google Scholar 

  • Spartz AK, Lee SH, Wenger JP, Gonzalez N, Itoh H, Inzé D, Peer WA, Murphy AS, Overvoorde PJ, Gray WM (2012) The SAUR19 subfamily of SMALL AUXIN UP RNA genes promote cell expansion. Plant J 70:978–990

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Turner JG, Ellis C, Devoto A (2002) The jasmonate signal pathway. Plant Cell 14:153–164

    Google Scholar 

  • Van LM, Vanderhaeghen R, De Block M, Bauw G, Villarroel R, Van Montagu M (1994) An S18 ribosomal protein gene copy at the Arabidopsis PFL locus affects plant development by its specific expression in meristems. EMBO J 13:3378–3388

    Google Scholar 

  • Vittoria A, Rendina N (1960) Fattori condizionanti la funzionalita tiaminica in piante superiori e ccenni sugli effetti dell bocca dei runinanti sull erbe pascolative. Acta Med Vet 52:573–574

    Google Scholar 

  • Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138

    Article  PubMed  Google Scholar 

  • Wang Z, Yan HW, Fu XN, Li XH, Gao HW (2013) Development of simple sequence repeat markers and diversity analysis in alfalfa (Medicago sativa L.). Mol Biol Rep 40:3291–3298

    Article  CAS  PubMed  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot-london 95:707–735

    Article  CAS  Google Scholar 

  • Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, Wei L (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39:316–322

    Article  Google Scholar 

  • Yang SS, Tu ZJ, Cheung F, Xu WW, Lamb JFS, Jung H-JG, Vance CP, Gronwald JW (2011) Using RNA-Seq for gene identification, polymorphism detection and transcript profiling in two alfalfa genotypes with divergent cell wall composition in stems. BMC Genom 12:199

    Article  CAS  Google Scholar 

  • Ye J, Fang L, Zheng HK, Zhang Y, Chen J, Zhang ZJ, Wang J, Li ST, Li RQ, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:293–297

    Article  Google Scholar 

  • Zang YX, Zheng WW, He Y, Hong SB, Zhu ZJ (2015) Global analysis of transcriptional response of Chinese cabbage to methyl jasmonate reveals JA signaling on enhancement of secondary metabolism pathways. Sci Hortic-amsterdam 189:159–167

    Article  CAS  Google Scholar 

  • Zhang Z, Wang SP, Jiang GM, Patton B, Nyren P (2007) Responses of Artemisia frigida Willd. (Compositae) and Leymus chinensis (Trin.) Tzvel. (Poaceae) to sheep saliva. J Arid Environ 70:111–119

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Basic Research Program of China (2014CB138704), the National Natural Science Foundation of China (31272492, 31502000), and the Program for Changjiang Scholars and Innovative Research Team in University (IRT13019). We are grateful to Dr. Zulfi Jahufer (AgResearch Grasslands Research Center, New Zealand) for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhipeng Liu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in the present investigation.

Additional information

Communicated by Z.-Y. Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1 Clean reads in the four sample libraries (TIFF 222 kb)

Fig. S2 The quality of the assembled transcripts (TIFF 135 kb)

Fig. S3 Venn diagrams of the unigenes in the four libraries (TIFF 2479 kb)

299_2015_1903_MOESM4_ESM.tif

Fig. S4 GO classification of the assembled transcripts. The genes were assigned to three main categories: biological process, molecular function and cellular component. The right-hand y-axis indicates the number of annotated genes. The left-hand y-axis indicates the percentage of annotated genes (TIFF 1433 kb)

Fig. S5 COG function classifications of the assembled transcripts (TIFF 2185 kb)

Fig. S6 KEGG annotation of the assembled transcripts (TIFF 1681 kb)

299_2015_1903_MOESM7_ESM.docx

Fig. S7 Heat map diagram of the expression levels of the DEGs specifically enriched in the KEGG pathways. a DEGs involved in JA biosynthesis. b DEGs involved in plant-pathogen interaction. c DEGs involved in plant hormone signal transduction. d DEGs involved in ribosome (DOCX 1933 kb)

Supplementary material 8 (XLS 9 kb)

Supplementary material 9 (XLS 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Zhang, Z., Chen, S. et al. Global transcriptome profiling analysis reveals insight into saliva-responsive genes in alfalfa. Plant Cell Rep 35, 561–571 (2016). https://doi.org/10.1007/s00299-015-1903-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1903-9

Keywords

Navigation