Skip to main content
Log in

The AtLRK10L1.2, Arabidopsis ortholog of wheat LRK10, is involved in ABA-mediated signaling and drought resistance

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

The loss-of-function mutants of the Arabidopsis orthologue of the wheat LRK10 gene shows ABA-insensitive and drought stress-sensitive phenotypes, suggesting that LRK10L1.2 is positively involved in ABA signaling.

Abstract

A subset of receptor-like kinases (RLKs) superfamily proteins play a key role in sensing internal and external signals. A gene encoding Arabidopsis thaliana Leaf rust 10 disease-resistance locus receptor-like protein kinase 1 (AtLRK10L1), most closely related to wheat LRK10, expresses two different transcripts, LRK10L1.1 and LRK10L1.2, using alternative promoters. The T-DNA insertion mutant, lrk10l1-2, that specifically shuts down LRK10L1.2 transcription displayed an abscisic acid (ABA)-insensitive phenotype in seed germination and seedling growth. However, the lrk10l1.2 mutant exhibited reduced tolerance to drought stress, compared with wild type, which is accompanied by alteration of stomatal apertures. The transgenic plants overexpressing full-length LRK10L1.2, which localizes to the plasma membrane (PM) complemented the phenotypes of lrk10l1-2 mutant background, while those expressing LRK10L1.2 Nu1, which switched its localization to the endoplasmic reticulum (ER) by skipping of a mini-exon, showed even higher ABA insensitivity and drought sensitivity than its mutant background. Our results suggest that ABA signaling involves the PM-localized LRK10L1.2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

AS:

Alternative splicing

ER:

Endoplasmic reticulum

IVS:

Intervening sequence

LRK10L:

Leaf rust 10 disease-resistance locus receptor-like protein kinase-like

PM:

Plasma membrane

WT:

Wild type

YFP:

Yellow fluorescent protein

References

  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate–ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bai L, Zhang G, Zhou Y, Zhang Z, Wang W, Du Y, Wu Z, Song CP (2009) Plasma membrane-associated proline-rich extensin-like receptor kinase 4, a novel regulator of Ca signalling, is required for abscisic acid responses in Arabidopsis thaliana. Plant J 60:314–327

    Article  CAS  PubMed  Google Scholar 

  • Becraft PW, Stinard PS, McCarty DR (1996) CRINKLY4 – a TNFR-like receptor kinase involved in maize epidermal differentiation. Science 273:1406–1409

    Article  CAS  PubMed  Google Scholar 

  • Cao D, Cheng H, Wu W, Soo HM, Peng J (2006) Gibberellin mobilizes distinct DELLA-dependent transcriptomes to regulate seed germination and floral development in Arabidopsis. Plant Physiol 142:509–525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choi H, Hong J, Ha J, Kang J, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730

    Article  CAS  PubMed  Google Scholar 

  • Clark SE, Williams RW, Meyerowitz EM (1997) The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89:575–585

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Contento AL, Kim SJ, Bassham DC (2004) Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation. Plant Physiol 135:2330–2347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  CAS  PubMed  Google Scholar 

  • Feuillet C, Schachermayr G, Keller B (1997) Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. Plant J 11:45–52

    Article  CAS  PubMed  Google Scholar 

  • Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park S-Y, Cutler SR, Sheen J, Rodriguez PL, Zhu J-K (2009) In vitro reconstitution of an abscisic acid signalling pathway. Nature 462:660–664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gish LA, Clark SE (2011) The RLK/Pelle family of kinases. Plant J 66:117–127

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Gomez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

    Article  CAS  PubMed  Google Scholar 

  • He ZH, Cheeseman I, He D, Kohorn BD (1999) A cluster of five cell wall-associated receptor kinase genes, Wak1-5, are expressed in specific organs of Arabidopsis. Plant Mol Biol 39:1189–1196

    Article  CAS  PubMed  Google Scholar 

  • Hua D, Wang C, He J, Liao H, Duan Y, Zhu Z, Guo Y, Chen Z, Gong Z (2012) A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis. Plant Cell 24:2546–2561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI (2010) Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev 24:1695–1708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim SH, Koroleva OA, Lewandowska D, Pendle AF, Clark GP, Simpson CG, Shaw PJ, Brown JWS (2009) Aberrant mRNA Transcripts and the Nonsense-Mediated Decay Proteins UPF2 and UPF3 Are Enriched in the Arabidopsis Nucleolus. Plant Cell 21:2045–2057

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim TH, Bohmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kwak SH, Shen R, Schiefelbein J (2005) Positional signaling mediated by a receptor-like kinase in Arabidopsis. Science 307:1111–1113

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Lan W, Buchanan BB, Luan S (2009) A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proc Natl Acad Sci USA 106:21419–21424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leon P, Sheen J (2003) Sugar and hormone connections. Trends Plant Sci 8:110–116

    Article  CAS  PubMed  Google Scholar 

  • Limpens E, Franken C, Smit P, Willemse J, Bisseling T, Geurts R (2003) LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science 302:630–633

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo O, Chico JM, Sánchez-Serrano JJ, Solano R (2004) JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16:1938–1950

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luan S (2002) Signalling drought in guard cells. Plant Cell Environ 25:229–237

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068

    CAS  PubMed  Google Scholar 

  • Nakhamchik A, Zhao Z, Provart NJ, Shiu SH, Keatley SK, Cameron RK, Goring DR (2004) A comprehensive expression analysis of the Arabidopsis proline-rich extensin-like receptor kinase gene family using bioinformatic and experimental approaches. Plant Cell Physiol 45:1875–1881

    Article  CAS  PubMed  Google Scholar 

  • Nodine MD, Yadegari R, Tax FE (2007) RPK1 and TOAD2 are two receptor-like kinases redundantly required for Arabidopsis embryonic pattern formation. Dev Cell 12:943–956

    Article  CAS  PubMed  Google Scholar 

  • Osakabe Y, Maruyama K, Seki M, Satou M, Shinozaki K, Yamaguchi-Shinozaki K (2005) Leucine-rich repeat receptor-like kinase1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis. Plant Cell 17:1105–1119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  CAS  PubMed  Google Scholar 

  • Ramanjulu S, Bartels D (2002) Drought- and desiccation-induced modulation of gene expression in plants. Plant Cell Environ 25:141–151

    Article  CAS  PubMed  Google Scholar 

  • Ringli C (2010) The hydroxyproline-rich glycoprotein domain of the Arabidopsis LRX1 requires Tyr for function but not for insolubilization in the cell wall. Plant J 63:662–669

    Article  CAS  PubMed  Google Scholar 

  • Rook F, Corke F, Card R, Munz G, Smith C, Bevan MW (2001) Impaired sucrose induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling. Plant J 26:421–433

    Article  CAS  PubMed  Google Scholar 

  • Searle IR, Men AE, Laniya TS, Buzas DM, Iturbe-Ormaetxe I, Carroll BJ, Gresshoff PM (2003) Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science 299:109–112

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    Article  CAS  PubMed  Google Scholar 

  • Shiu SH, Bleecker AB (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA 98:10763–10768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shiu SH, Bleecker AB (2003) Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132:530–543

    Article  CAS  PubMed  Google Scholar 

  • Stein JC, Howlett B, Boyes DC, Nasrallah ME, Nasrallah JB (1991) Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea. Proc Natl Acad Sci USA 88:8816–8820

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanaka H, Osakabe Y, Katsura S, Mizuno S, Maruyama K, Kusakabe K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) Abiotic stress-inducible receptor-like kinases negatively control ABA signaling in Arabidopsis. Plant J 70:599–613

    Article  CAS  PubMed  Google Scholar 

  • Veley KM, Michaels SD (2008) Functional redundancy and new roles for genes of the autonomous floral-promotion pathway. Plant Physiol 147:682–695

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang XQ, Zafian P, Choudhuary M, Lawton M (1996) The PRK5 receptor protein kinase from Arabidopsis thaliana is structurally related to a family of plant defense proteins. Proc Natl Acad Sci USA 93:2598–2602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ward JM, Pei ZM, Schroeder JI (1995) Roles of Ion Channels in Initiation of Signal Transduction in Higher Plants. Plant Cell 7:833–844

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ward JM, Maser P, Schroeder JI (2008) Plant Ion Channels: gene Families, Physiology, and Functional Genomics Analysis. Annu Rev Physiol 71:59–82

    Article  Google Scholar 

  • Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frey NFd, Leung J (2008) An update on abscisic acid signaling in plants and more. Mol Plant 1:198–217

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Yang G, Shi R, Han X, Qi L, Wang R, Xiong L, Li G (2013) Arabidopsis cysteine-rich receptor-like kinase 45 functions in the responses to abscisic acid and abiotic stresses. Plant Physiol Biochem 67:189–198

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Jang JC, Jones TL, Sheen J (1998) Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. Proc Natl Acad Sci USA 95:10294–10299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the BioGreen 21 Program, Rural Development Administration of Republic of Korea (PJ00948402) to S. H. K. and (PJ00822201) to S. C. L., and the National Research Foundation (NRF) of Korea Grant funded by the Korean Government (MOE) (NRF-2011-0029568) to S. H. K. and (No. 2010-0024596) to S. H. Y.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sung Chul Lee or Sang Hyon Kim.

Additional information

Communicated by Youn-Il Park.

C. W. Lim and S. H. Yang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

299_2014_1724_MOESM1_ESM.tif

Fig. S1 a Phenotypes of WT, lrk10l-2, and 35S-Lrk10L1.2 transgenic plants in long day growth condition. Thirty-day-old plants were photographed when the primary inflorescence stems of lrk10l1-2 are 0.5 cm long. b T-DNA insertion sites of ld insertional mutants (Salk_145773 and Salk_003047). The 5´ and 3´ UTR’s and CDS are drawn by open and closed boxes, respectively. Introns shown by solid lines. c RT-PCR analysis for the LRK10L1.2 transcript from WT (Col-0) and two T-DNA insertion mutants using the primers shown in Fig. 1a (P2 and P3). (TIFF 14020 kb)

299_2014_1724_MOESM2_ESM.tif

Fig. S2 Seedling growth of WT, mutants and transgenic plants in response to mannitol, glucose, and NaCl. The seedlings were grown in 0.5× MS containing different concentrations of mannitol and glucose, and 200 mM NaCl. The representative images were taken 7 days (for 300 mM manitol, 4 and 5 % glucose) or after 10 days (for 400 mM Mannitol, 6 % glucose, and 200 mM NaCl) after stratification. (TIFF 11031 kb)

Supplementary material 3 (PPTX 83 kb)

299_2014_1724_MOESM4_ESM.tif

Fig. S4 LRK10L1.2 expression does not affect transcription of ABA marker genes, KIN1, RD22 and RAB18. Different plant samples indicated on the left were treated and collected as in Fig. 5 for RNA extraction. Gene-specific primers for the genes indicated on the right are listed in Table. S1. LRK10L1.2, the WT background of lrk10l1-2; No4, 35S-Lrk10L1.2 No4/lrk10l1-2 (Line 7) and; Nu1, 35S-Lrk10L1.2 Nu1/lrk10l1-2 (Line14). (TIFF 9488 kb)

Supplementary material 5 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, C.W., Yang, S.H., Shin, K.H. et al. The AtLRK10L1.2, Arabidopsis ortholog of wheat LRK10, is involved in ABA-mediated signaling and drought resistance. Plant Cell Rep 34, 447–455 (2015). https://doi.org/10.1007/s00299-014-1724-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1724-2

Keywords

Navigation