Skip to main content
Log in

Molecular cloning and expression of five glutathione S-transferase (GST) genes from Banana (Musa acuminata L. AAA group, cv. Cavendish)

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Three tau class MaGSTs responded to abiotic stress, MaGSTF1 and MaGSTL1 responded to signaling molecules, they may play an important role in the growth of banana plantlet.

Abstract

Glutathione S-transferases (GST) are multifunctional detoxification enzymes that participate in a variety of cellular processes, including stress responses. In this study, we report the molecular characteristics of five GST genes (MaGSTU1, MaGSTU2, MaGSTU3, MaGSTF1 and MaGSTL1) cloned from banana (Musa acuminate L. AAA group, cv. Cavendish) using a RACE-PCR-based strategy. The predicted molecular masses of these GSTs range from 23.4 to 27.7 kDa and their pIs are acidic. At the amino acid level, they share high sequence similarity with GSTs in the banana DH-Pahang (AA group) genome. Phylogenetic analysis showed that the deduced amino acid sequences of MaGSTs also have high similarity to GSTs of other plant species. Expression analysis by semi-quantitative RT-PCR revealed that these genes are differentially expressed in various tissues. In addition, their expression is regulated by various stress conditions, including exposure to signaling molecules, cold, salinity, drought and Fusarium oxysporum f specialis(f. Sp) cubense Tropical Race 4 (Foc TR4) infection. The expression of the tau class MaGSTs (MaGSTU1, MaGSTU2 and MaGSTU3) mainly responded to cold, salinity and drought while MaGSTF1 and MaGSTL1 expressions were upregulated by signaling molecules. Our findings suggest that MaGSTs play a key role in both development and abiotic stress responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arnon DI, Hoagland DR (1939) A comparison of water culture and soil as media for crop production. Science 89:512–514

    Article  PubMed  CAS  Google Scholar 

  • Aurore G, Parfait B, Fahrasmane L (2009) Bananas, raw materials for making processed food products. Trends Food Sci Technol 20:78–91

    Article  CAS  Google Scholar 

  • Bailly C (2004) Active oxygen species and antioxidants in seed biology. Seed Sci Res 14:93–107

    Article  CAS  Google Scholar 

  • Barthelson R, Qaisar U, Galbraith D (2010) Functional analysis of the Gossypium arboreum genome. Plant Mol Biol Rep 28(2):334–343

    Article  CAS  Google Scholar 

  • Basantani M, Srivastava A (2007) Plant glutathione transferases—a decade falls short. Can J Bot 85:443–456

    Article  CAS  Google Scholar 

  • Bianchi MW, Roux C, Vartanian N (2002) Drought regulation of GST8, encoding the Arabidopsis homologue of ParC/Nt107 glutathione transferase/peroxidase. Physiol Plant 116:96–105

    Article  PubMed  CAS  Google Scholar 

  • Carpentier SC, Vertommen A, Swennen R, Witters E, Fortes C, Souza MT Jr, Panis B (2010) Sugar-mediated acclimation: the importance of sucrose metabolism in meristems. J Proteome Res 9(10):5038–5046

    Article  PubMed  CAS  Google Scholar 

  • Chen WQ, Singh KB (1999) The auxin, hydrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element. Plant J 19(6):667–677

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Zhong H, Kuang J et al (2011) Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions. Planta 234(2):377–390

    Article  PubMed  CAS  Google Scholar 

  • D’Hont A, Denoeud F, Aury J-M, Baurens F-C, Carreel F, Garsmeur O et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 448:213–217

    Article  Google Scholar 

  • Dixon DP, Lapthorn A, Edwards R (2002a) Plant glutathione transferases. Genome Biol 3:1–10

    Article  Google Scholar 

  • Dixon DP, Davis BG, Edwards R (2002b) Functional divergence in the glutathione transferase superfamily in plants. J Biol Chem 34:30859–30869

    Article  Google Scholar 

  • Dixon DP, McEwen AG, Lapthorn AJ, Edwards R (2003) Forced evolution of a herbicide detoxifying glutathione transferase. J Biol Chem 278:23930–23935

    Article  PubMed  CAS  Google Scholar 

  • Dowd C, Wilson LW, McFadden H (2004) Gene expression profile changes in cotton root and hypocotyl tissues in response to infection with Fusarium oxysporum f. sp vasinfectum. Mol Plant Microbe Interact 17(6):654–667

    Article  PubMed  CAS  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  PubMed  CAS  Google Scholar 

  • Edwards R, Dixon DP (2005) Plant glutathione transferases. Methods Enzymol 401:169–186

    Article  PubMed  CAS  Google Scholar 

  • Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Ann Rev. Pharmacol Toxicol 45:51–88

    Article  CAS  Google Scholar 

  • Lan T, Yang ZL, Yang X, Liu YJ, Wang XR, Zeng QY (2009) Extensive functional diversification of the Populus glutathione S-transferase supergene family. Plant Cell 218(1):3749–3766

    Google Scholar 

  • Lescot M, Dehais P, Thijs G, Marchal K et al (2002) Plant CARE, a database of plant cisacting regulatory elements and a portal to tools for the in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  PubMed  CAS  Google Scholar 

  • Li MY, Xu BY, Liu JH et al (2012) Identification and expression analysis of four 14-3-3 genes during fruit ripening in banana (Musa acuminata L. AAA group, cv. Brazilian). Plant Cell Rep 31(2):369–378

    Article  PubMed  CAS  Google Scholar 

  • Lo Piero AR, Puglisi I, Rapisarda P, Petrone G (2005) Anthocyanin accumulation and related gene expression in red orange fruit induced by low temperature storage. J Agric Food Chem 53:9083–9088

    Article  PubMed  CAS  Google Scholar 

  • Lu ZX, Gaudet DA, Frick M, Puchalski B, Genswein B, Laroche A (2005) Identification and characterization of genes differentially expressed in the resistance reaction in wheat infected with Tilletia tritici, the common bunt pathogen. J Biochem Mol Biol 38(4):420–431

    Article  PubMed  CAS  Google Scholar 

  • Mauch F, Dudler R (1993) Differential induction of distinct glutathione S-transferases of wheat by xenobiotics and by pathogen attack. Plant Physiol 102:1193–1201

    Article  PubMed  CAS  Google Scholar 

  • McGonigle B, Keeler SJ, Lau SM et al (2000) A genomics approach to the comprehensive analysis of the glutathione S-transferase gene family in soybean and maize. Plant Physiol 124(3):1105–1120

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gallery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Moons A (2005) Regulatory and functional interaction of plant growth regulators and plant glutathione S-transferases (GSTs). Vitam Horm 72:155–202

    Article  PubMed  CAS  Google Scholar 

  • Pflugmacher S, Schröder P, Sandermann H Jr (2000) Taxonomic distribution of plant glutathione S-transferases acting on xenobiotics. Phytochemistry 4(3):267–273

    Article  Google Scholar 

  • Ploetz RC, Pegg KG (2000) Fusarium wilt. In: Jones DR (ed) Diseases of Banana, abaca and enset. CABI Publishing, Wallingford, pp 143–159

  • Sappl PG, Carroll AJ, Clifton R, Lister R, Whelan J, Harvey Millar A, Singh KB (2009) The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress. Plant J 58:53–68

    Article  PubMed  CAS  Google Scholar 

  • Smith AP, DeRidder BP, Guo WJ, Seeley EH, Regnier FE, Goldsbrough PB (2004) Proteomic analysis of Arabidopsis glutathione S-transferases from benoxacor- and copper-treated seedlings. J Biol Chem 279:26098–26104

    Article  PubMed  CAS  Google Scholar 

  • Soranzo N, Sari Gola M, Mizzi L, De Toma G, Frova C (2004) Organisation and structural evolution of the rice glutathione S-transferase gene family. Mol Genet Genomics 271:511–521

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596e9

  • Vollenweider S, Weber H, Stolz S, Chetelat A, Farmer EE (2000) Fatty acid ketodienes and fatty acid ketotrienes: Michael addition acceptors that accumulate in wounded and diseased Arabidopsis leaves. Plant J 24:467–476

    Article  PubMed  CAS  Google Scholar 

  • Wagner U, Edwards R, Dixon DP, Mauch F (2002) Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol Biol 49:515–532

    Article  PubMed  CAS  Google Scholar 

  • Wan CY, Wilkins TA (1994) A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Anal Biochem 223:7–12

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Ying X, Wang J et al (2011) Construction and characterization of normalized full-length cDNA library of banana roots. Acta Horticulturae Sinica 38(9):1667–1674

    CAS  Google Scholar 

  • Wang Z, Zhang JB, Jia CH et al (2012) De Novo characterization of the banana root transcriptome and analysis of gene expression under Fusarium oxysporum f. sp. Cubense tropical race 4 infection. BMC Genomics 13(650):1–9

    Google Scholar 

  • Xu F, Lagudah ES, Moose SP, Riechers DE (2002) Tandemly duplicated Safener-induced glutathione S-transferase genes from Triticum tauschii contribute to genome- and organ-specific expression in hexaploid wheat. Plant Physiol 130:362–373

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Technology of the People’s Republic of China (No. 2011AA10020605) and the earmarked funds for Modern Agro-industry Technology Research System of China (CARS-32).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Jin.

Additional information

Communicated by M. Jordan.

Z. Wang and S. Huang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Huang, S., Jia, C. et al. Molecular cloning and expression of five glutathione S-transferase (GST) genes from Banana (Musa acuminata L. AAA group, cv. Cavendish). Plant Cell Rep 32, 1373–1380 (2013). https://doi.org/10.1007/s00299-013-1449-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1449-7

Keywords

Navigation