Skip to main content
Log in

Auxin: a master regulator in plant root development

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The demand for increased crop productivity and the predicted challenges related to plant survival under adverse environmental conditions have renewed the interest in research in root biology. Various physiological and genetic studies have provided ample evidence in support of the role of plant growth regulators in root development. The biosynthesis and transport of auxin and its signaling play a crucial role in controlling root growth and development. The univocal role of auxin in root development has established it as a master regulator. Other plant hormones, such as cytokinins, brassinosteroids, ethylene, abscisic acid, gibberellins, jasmonic acid, polyamines and strigolactones interact either synergistically or antagonistically with auxin to trigger cascades of events leading to root morphogenesis and development. In recent years, the availability of biological resources, development of modern tools and experimental approaches have led to the advancement of knowledge in root development. Research in the areas of hormone signal perception, understanding network of events involved in hormone action and the transport of plant hormones has added a new dimension to root biology. The present review highlights some of the important conceptual developments in the interplay of auxin and other plant hormones and associated downstream events affecting root development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abel S, Nguyen MD, Chow W, Theologis A (1995) ASC4, a primary indoleacetic acid responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis thaliana. J Biol Chem 270:19093–19099

    Article  PubMed  CAS  Google Scholar 

  • Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109–120

    Article  PubMed  CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Solano R, Wisman E, Ferrari S, Ausubel FM, Ecker JR (2003) Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proc Natl Acad Sci USA 100:2992–2997

    Article  PubMed  CAS  Google Scholar 

  • Bao F, Shen J, Brady SR, Muday GK, Asami T, Yang Z (2004) Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol 134:1624–1631

    Article  PubMed  CAS  Google Scholar 

  • Benfey PN, Bennett M, Schiefelbein J (2010) Getting to the root of plant biology: impact of the Arabidopsis. Plant J 61:992–1000

    Article  PubMed  CAS  Google Scholar 

  • Benjamins R, Scheres B (2008) Auxin: the looping star in plant development. Annu Rev Plant Biol 59:443–465

    Article  PubMed  CAS  Google Scholar 

  • Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273:948–950

    Article  PubMed  CAS  Google Scholar 

  • Berova M, Zlatev Z (2000) Physiological response and yield of paclobutrazol treated tomato plants (Lycopersicon esculentum Mill.). Plant Growth Regul 30:117–123

    Article  CAS  Google Scholar 

  • Bielach A, Duclercq J, Marhavý P, Benková E (2012) Genetic approach towards the identification of auxin–cytokinin crosstalk components involved in root development. Phil Trans R Soc B 367:1469–1478

    Article  PubMed  CAS  Google Scholar 

  • Biondi S, Diaz T, Iglesias I, Gamberini G, Bagni N (1990) Polyamines and ethylene in relation to adventitious root formation in Prunus avium shoot cultures. Physiol Plant 78:474–483

    Article  Google Scholar 

  • Bishopp A, Benkova E, Helariutta Y (2011) Sending mixed messages: auxin–cytokinin crosstalk in roots. Curr Opin Plant Biol 14:10–16

    Article  PubMed  CAS  Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44

    Article  PubMed  CAS  Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125

    Article  CAS  Google Scholar 

  • Brady SM, Sarkar SF, Bonetta D, McCourt P (2003) The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signalling and lateral root development in Arabidopsis. Plant J 34:67–75

    Article  PubMed  CAS  Google Scholar 

  • Buer CS, Sukumar P, Muday GK (2006) Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis thaliana. Plant Physiol 140:1384–1396

    Article  PubMed  CAS  Google Scholar 

  • Busov V, Meilan R, Pearce DW, Rood SB, Ma C, Tschaplinski TJ, Strauss SH (2006) Transgenic modification of gai or rgl1 causes dwarfing and alters gibberellins, root growth, and metabolite profiles in Populus. Planta 224:288–299

    Article  PubMed  CAS  Google Scholar 

  • Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165–171

    Article  PubMed  CAS  Google Scholar 

  • Chandler JW (2009) Local auxin production: a small contribution to a big field. BioEssays 31:60–70

    Article  PubMed  CAS  Google Scholar 

  • Chapman EJ, Estelle M (2009) Cytokinin and auxin intersection in root meristems. Genome Biol 10:210. doi:10.1186/gb-2009-10-2-210

    Article  CAS  Google Scholar 

  • Choi Y, Lee Y, Kim SY, Lee Y, Hwang J (2012) Arabidopsis ROP-interactive CRIB motif-containing protein 1 (RIC1) positively regulates auxin signalling and negatively regulates abscisic acid (ABA) signalling during root development. Plant, Cell and Environment, pp 1–11. doi:10.1111/pce.12028

  • Choudhary SP, Yu JQ, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2012) Benefits of brassinosteroid crosstalk. Trends Plant Sci 17:594–605

    Article  PubMed  CAS  Google Scholar 

  • Chung Y et al (2011) Auxin stimulates DWARF4 expression and brassinosteroid biosynthesis in Arabidopsis. Plant J 66:564–578

    Article  PubMed  CAS  Google Scholar 

  • Clark DG, Gubrium EK, Barrett JE, Nell TA, Klee HJ (1999) Root formation in ethylene-insensitive plants. Plant Physiol 121:53–60

    Article  PubMed  CAS  Google Scholar 

  • Coudert Y, Pe′rin C, Courtois B, Khong NG, Gantet P (2010) Genetic control of root development in rice, the model cereal. Trends Plant Sci 15:219–226

    Article  PubMed  CAS  Google Scholar 

  • Couee I, Hummel I, Sulmon C, Gouesbet G, Amrani AE (2004) Involvement of polyamines in root development. Plant Cell, Tissue Organ Cult 76:1–10

    Article  CAS  Google Scholar 

  • Dai Y, Wang H, Li B, Huang J, Liu X, Zhou Y, Mou Z, Li J (2006) Increased expression of MAP KINASE KINASE7 causes deficiency in polar auxin transport and leads to plant architectural abnormality in Arabidopsis. Plant Cell 18:308–320

    Article  PubMed  CAS  Google Scholar 

  • Davies PJ (2010) Plant hormones: their nature, occurrence, and functions. In: Davies PJ (ed) Plant hormones. Springer, Netherlands, pp 1–15

    Chapter  Google Scholar 

  • De Dorlodot S, Forster B, Page`s L, Price A, Tuberosa R, Draye X (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12:474–481

    Article  PubMed  CAS  Google Scholar 

  • De Smet I, Signora L, Beeckman T, Inzé D, Foyer CH, Zhang H (2003) An abscisic acid sensitive checkpoint in lateral root development of Arabidopsis. Plant J 33:543–555

    Article  PubMed  Google Scholar 

  • De Smet I, White PJ, Bengough AG, Dupuy L, Parizot B, Casimiro I, Heidstra R, Laskowski M, Lepetit M, Hochholdinge F, Draye X, Zhang H, Broadley MR, Peret B, Hammond JP, Fukaki H, Mooney S, Lynch JP, Nacry P, Schurr U, Laplaze L, Benfey P, Beeckman T, Bennett M (2012) Analyzing lateral root development: how to move forward. Plant Cell 24:15–20

    Article  PubMed  CAS  Google Scholar 

  • Dello Ioio R, Linhares FS, Scacchi E, Casamitjana-Martinez E, Heidstra R, Costantino P, Sabatini S (2007) Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol 17:678–682

    Article  PubMed  CAS  Google Scholar 

  • Dello Ioio R, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita MT, Aoyama T, Costantino P, Sabatini S (2008) A genetic framework for the control of cell division and differentiation in the root meristem. Science 322:1380–1384

    Article  PubMed  CAS  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    Article  PubMed  CAS  Google Scholar 

  • Dhonukshe P, Grigoriev I, Fischer R, Tominaga M, Robinson DG, Hasek J, Paciorek T, Petrasek J, Seifertova′ D, Tejos R, Meisel LA, Zazımalova′ E, Gadella TWJ, Stierhof YD, Ueda T, Oiwa K, Akhmanova A, Brock R, Spang A, Friml J (2008) Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. PNAS 105:4489–4494

    Article  PubMed  CAS  Google Scholar 

  • Dill A, Sun T (2001) Synergistic derepression of gibberellins signalling by removing RGA and GAI function in Arabidopsis thaliana. Genetics 159:777–785

    PubMed  CAS  Google Scholar 

  • Fleet CM, Sun TP (2005) A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol 8:77–85

    Article  PubMed  CAS  Google Scholar 

  • Flores HE, Galston AW (1982) Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol 69:701–706

    Article  PubMed  CAS  Google Scholar 

  • Fowler MR, Kirby MJ, Scott NW, Slater A, Elliott MC (1996) Polyamine metabolism and gene regulation during the transition of autonomous sugar beet cell in suspension culture from quiescence to division. Physiol Plant 98:439–446

    Article  CAS  Google Scholar 

  • Frigerio M, Alabadi D, Perez-Gomez J, Gracia-Cacel L, Phillips AL, Hedden P, Blazquez MA (2006) Transcriptional regulation of gibberellins metabolism genes by auxin signaling in Arabidopsis. Plant Physiol 142:553–563

    Article  PubMed  CAS  Google Scholar 

  • Fu X, Harberd NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellins response. Nature 421:740–743

    Article  PubMed  CAS  Google Scholar 

  • Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene in Arabidopsis. Plant J 29:153–168

    Article  PubMed  CAS  Google Scholar 

  • Galweiler L, Guan C, Muller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transportby AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230

    Article  PubMed  CAS  Google Scholar 

  • Geisler M, Murphy AS (2006) The ABC of auxin transport: the role of p-glycoproteins in plant development. FEBS Lett 580:1094–1102

    Article  PubMed  CAS  Google Scholar 

  • Gou J, Strauss SH, Tsai CJ, Kai F, Chen Y, Jiang X, Busov VB (2010) Gibberellins regulate lateral root formation in Populus through interactions with auxin and other hormones. Plant Cell 22:623–639

    Article  PubMed  CAS  Google Scholar 

  • Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414:271–276

    Article  PubMed  CAS  Google Scholar 

  • Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460

    Article  PubMed  CAS  Google Scholar 

  • Guilfoyle T, Hagen G, Ulmasov T, Murfett J (1998a) How does auxins turn on genes? Plant Physiol 118:341–347

    Article  PubMed  CAS  Google Scholar 

  • Guilfoyle TJ, Ulmasov T, Hagen G (1998b) The ARF family of transcription factors and their role in plant hormone-responsive transcription. Cell Mol Life Sci 54:619–627

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Rashotte AM (2012) Down-stream components of cytokinin signaling and the role of cytokinin throughout the plant. Plant Cell Rep 31:801–812

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez L, Mongelard G, Floková K, Păcurar DI, Novák O, Staswick P, Kowalczyk M, Păcurar M, Demailly H, Geiss G, Bellini C (2012) Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic Acid homeostasis. Plant cell 24:2515–2527

    Article  PubMed  CAS  Google Scholar 

  • Hacham Y, Holland N, Butterfield C, Ubeda-Tomas S, Bennett MJ, Chory J, Savaldi-Goldstein S (2011) Brassinosteroid perception in the epidermis controls root meristem size. Development 138:839–848

    Article  PubMed  CAS  Google Scholar 

  • Hacham Y et al (2012) BRI1 activity in the root meristem involves post-transcriptional regulation of PIN auxin efflux carriers. Plant Signal Behav 7:68–70

    Article  PubMed  CAS  Google Scholar 

  • Haecker A, Groß-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M, Laux T (2004) Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131:657–668

    Article  PubMed  CAS  Google Scholar 

  • Hardtke CS, Dorcey E, Osmont KS, Sibout R (2007) Phytohormone collaboration: zooming in on auxin–brassinosteroid interactions. Trends Cell Biol 17:485–492

    Article  PubMed  CAS  Google Scholar 

  • Hausman JF, Kevers C, Gaspar T (1994) Auxin–polyamine interaction in the control of the rooting inductive phase of poplar shoots in vitro. Plant Sci 110:63–71

    Article  Google Scholar 

  • He JX, Gendron JM, Yang Y, Li J, Wang ZY (2002) The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc Natl Acad Sci USA 99:10185–10190

    Article  PubMed  CAS  Google Scholar 

  • Heloir M, Kevers C, Hausman J, Gaspar T (1996) Changes in the concentration of auxins and polyamines during rooting of in vitro-propagated walnut shoots. Tree Physiol 16:515–519

    Article  PubMed  CAS  Google Scholar 

  • Hennion F, Martin-Tanguy J (2000) Amines of the subantarctic crucifer Pringlea antiscorbutica are responsive to temperature conditions. Physiol Plant 109:232–243

    Article  CAS  Google Scholar 

  • Hummel I, Couée I, EI Amrani A, Martin-Tanguy J, Hennion F (2002) Involvement of polyamines in root development at low temperature in the subantarctic cruciferous species Pringlea antiscorbutica. J Exp Bot 53:1463–1473

    Article  PubMed  CAS  Google Scholar 

  • Itoh H, Matsuoka M, Steber CM (2003) A role for the ubiquitin 26S proteasome pathway in gibberellins signalling. Trends Plant Sci 8:492–497

    Article  PubMed  CAS  Google Scholar 

  • Ivanchenko MG, Muday GK, Dubrovsky JG (2008) Ethylene–auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana. Plant J 55:335–347

    Article  PubMed  CAS  Google Scholar 

  • Jang SJ, Choi YJ, Park KY (2002) Effects of polyamines on shoot and root development in Arabidopsis seedlings and carnation cultures. Plant Biol J 45:230–236

    Article  CAS  Google Scholar 

  • Jones B, Gunnera SA, Petersson SV, Tarkowski P, Graham N, May S, Dolezal K, Sandberg G, Ljung K (2010) Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. Plant Cell 22:2956–2969

    Article  PubMed  CAS  Google Scholar 

  • Kapulnik Y, Delaux PM, Resnick N, Mayzlish-Gati E, Wininger S, Bhattacharya C, Sejalon-Delmas N, Combier JP, Becard G, Belausov E, Beeckman T, Dor E, Hershenhorn J, Koltai H (2011) Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 233:209–216

    Article  PubMed  CAS  Google Scholar 

  • Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451

    Article  PubMed  CAS  Google Scholar 

  • Kiba T, Kudo T, Kojima M, Sakakibara H (2011) Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin. J Exp Bot 62:1399–1409

    Article  PubMed  CAS  Google Scholar 

  • Kieber JJ, Schaller GE (2010) The Perception of Cytokinin: a story 50 years in the making. Plant Physiol 154:487–492

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Park PJ, Hwang HJ, Lee SY, Oh MH, Kim SG (2006) Brassinosteroid signals control expression of the AXR3/IAA17 gene in the cross-talk point with auxin in root development. Biosci Biotechnol Biochem 70(768):773

    Google Scholar 

  • King KE, Mortiz T, Harberd NP (2001) Gibberellins are not required for normal stem growth in Arabidopsis thaliana in the absence of GAI and RGA. Genetics 159:767–776

    PubMed  CAS  Google Scholar 

  • Kleine-Vehn J, Friml J (2008) Polar targeting and endocytic recycling in auxin-dependent plant development. Annu rev cell bio 24:447–473

    Article  CAS  Google Scholar 

  • Kleine-Vehn J, Huang F, Naramoto S, Zhang J, Michniewicz M, Offringa R, Friml J (2009) PIN auxin efflux carrier polarity is regulated by PINOID kinase-mediated recruitment into GNOM independent trafficking in Arabidopsis. Plant cell 21:3839–3849

    Article  PubMed  CAS  Google Scholar 

  • Knox K, Grierson CS, Leyser O (2003) AXR3 and SHY2 interact to regulate root hair development. Development 130:5769–5777

    Article  PubMed  CAS  Google Scholar 

  • Koltai H (2011) Strigolactones are regulators of root development. New Phytol 190:545–549

    Article  PubMed  CAS  Google Scholar 

  • Koltai H, Dor E, Hershenhorn J, Joel DM, Weininger S, Lekalla S, Shealtiel H, Bahattacharya C, Eliahu E, Resnick N, Barg R, Kapulnik Y (2010) Strigolactones’ effect on root growth and root-hair elongation may be mediated by auxin-efflux carriers. J Plant Growth Regul 29:129–136

    Article  CAS  Google Scholar 

  • Kovtun Y, Chiu WL, Zeng W, Sheen J (1998) Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 395:716–720

    Article  PubMed  CAS  Google Scholar 

  • Kramer EM, Bennett MJ (2006) Auxin transport: a field in flux. Trends Plant Sci 11:382–386

    Article  PubMed  CAS  Google Scholar 

  • Kuppusamy KT, Chen AY, Nemhauser JL (2009) Steroids are required for epidermal cell fate establishment in Arabidopsis roots. Proc Natl Acad Sci USA 106:8073–8076

    Article  PubMed  CAS  Google Scholar 

  • Lanteri ML, Pagnussat GC, Lamattina L (2006) Calcium and calcium dependent protein kinases are involved in nitric oxide- and auxininduced adventitious root formation in cucumber. J Exp Bot 57:1341–1351

    Article  PubMed  CAS  Google Scholar 

  • Lau S, Shao N, Bock R, Jurgens G, De Smet I (2009) Auxin signaling in algal lineages: fact or myth? Trends Plant Sci 14:182–188

    Article  PubMed  CAS  Google Scholar 

  • Le J, Vandenbussche F, Van Der Straeten D, Verbelen JP (2001) In the early response of Arabidopsis roots to ethylene, cell elongation is up and down regulated and uncoupled from differentiation. Plant Physiol 125:519–522

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Wang S, Sritubtim S, Chen JG, Ellis BE (2009) Arabidopsis mitogen-activated protein kinase MPK12 interacts with the MAPK phosphatase IBR5 and regulates auxin signaling. Plant J 57:975–985

    Article  PubMed  CAS  Google Scholar 

  • Lewis DR, Miller ND, Splitt BL, Wu G, Spalding EP (2007) Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two Arabidopsis multidrug resistance-like ABC transporter genes. Plant Cell 19:1838–1850

    Article  PubMed  CAS  Google Scholar 

  • Lewis DR, Negi S, Sukumar P, Muday GK (2011) Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. Development 138:3485–3495

    Article  PubMed  CAS  Google Scholar 

  • Li J, Nam KH (2002) Regulation of brassinosteroid signaling by a GSK3/SHAGGY-Like Kinase. Science 295:1299–1301

    PubMed  CAS  Google Scholar 

  • Li L, Xu J, Xu ZH, Xue HW (2005) Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis. Plant Cell 17:2738–2753

    Article  PubMed  CAS  Google Scholar 

  • Liscum E, Reed JW (2002) Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol 49:387–400

    Article  PubMed  CAS  Google Scholar 

  • Ljung K, Hull AK, Celenza J, Yamada M, Estelle M, Normanly J, Sandberga G (2005) Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell 17:1090–1104

    Article  PubMed  CAS  Google Scholar 

  • Lomax TL, Muday GK, Rubery PH (1995) Auxin transport. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology. Kluwer Academic Publishers, Dordrecht, Boston, pp 509–530

  • Luschnig C, Gaxiola RA, Grisafi P, Fink GR (1998) EIR1, a root specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev 12:2175–2187

    Article  PubMed  CAS  Google Scholar 

  • Maharjan PM, Schulz B, Choe S (2011) BIN2/DWF12 antagonistically transduces brassinosteroid and auxin signals in the roots of Arabidopsis. J Plant Biol 54:126–134

    Article  CAS  Google Scholar 

  • Mano Y, Nemoto K (2012) The pathway of a auxin biosynthesis in plants. J Exp Bot. doi:10.1093jxb/ers091

    PubMed  Google Scholar 

  • Mason MG, Mathews DE, Argyros DA, Maxwell BB, Kieber JJ, Alonso JM, Ecker JR, Schaller GE (2005) Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. Plant Cell 17:3007–3018

    Article  PubMed  CAS  Google Scholar 

  • Masucci JD, Schiefelbein JW (1996) Hormones act downstream of TTG and GL2 to promote root hair outgrowth during epidermis development in the Arabidopsis root. Plant Cell 8:1505–1517

    PubMed  CAS  Google Scholar 

  • Mendes AFS, Cidade LC, Otoni WC, Soares-Filho WS, Costa WGC (2011) Role of auxins, polyamines and ethylene in root formation and growth in sweet orange. Biol Plant 55:375–378

    Article  CAS  Google Scholar 

  • Michniewicz M, Zago MK, Abas L, Weijers D, Schweighofer A, Meskiene I, Heisler MG, Ohno C, Zhang J, Huang F, Schwab R, Weigel D, Meyerowitz EM, Luschnig C, Offringa R, Friml J (2007) Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130:1044–1056

    Article  PubMed  CAS  Google Scholar 

  • Mochaitis K, Estelle M (2008) Auxin receptors and plant development: a new signalling paradigm. Annu Rev Cell Dev Biol 24:55–80

    Article  CAS  Google Scholar 

  • Monroe-Augustus M, Zolman BK, Bartel B (2003) IBR5, a dual specificity phosphatase-like protein modulating auxin and abscisic acid responsiveness in Arabidopsis. Plant Cell 15:2979–2991

    Article  PubMed  CAS  Google Scholar 

  • Monzon GC, Pinedo M, Lamattina L, Canal L (2012) Sunflower root growth regulation: the role of jasmonic acid and its relation with auxins. Plant Growth Regul 66:129–136

    Article  CAS  Google Scholar 

  • Mouchel CF, Osmont KS, Hardtke CS (2006) BRX mediates feedback between brassinosteroid and auxin signalling in root growth. Nature 443:458–461

    Article  PubMed  CAS  Google Scholar 

  • Mravec J, Petrásek J, Li N, Boeren S, Karlova R, Kitakura S, Parezová M, Naramoto S, Nodzynski T, Dhonukshe P, Bednarek SY, Zazímalová E, De Vries S, Friml J (2011) Cell plate restricted association of DRP1A and PIN proteins is required for cell polarity establishment in Arabidopsis. Curr Biol 21:1055–1060

    Article  PubMed  CAS  Google Scholar 

  • Muday GK, Rahman A, Binder BM (2012) Auxin and ethylene: collaborators or competitors? Trends Plant Sci 17:181–195

    Article  PubMed  CAS  Google Scholar 

  • Muller B (2011) Generic signal-specific responses: cytokinin and context-dependent cellular responses. J Exp Bot 62:3273–3288

    Article  PubMed  CAS  Google Scholar 

  • Murase K, Hirano Y, Sun TP, Hakoshima T (2008) Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456:459–463

    Article  PubMed  CAS  Google Scholar 

  • Naija S, Elloumi N, Ammar S, Kevers C, Dommes J (2009) Involvement of polyamines in the adventitious rooting of micropropagated shoots of the apple rootstock MM106. J In Vitro Cell Dev Biol Plant 45:83–91

    Article  CAS  Google Scholar 

  • Nakamura A, Nakajima N, Goda H, Shimada Y, Hayashi K, Nozaki H, Asami T, Yoshida S, Fujioka S (2006) Arabidopsis Aux/IAA genes are involved in brassinosteroid-mediated growth responses in a manner dependent on organ type. Plant J 45:193–205

    Article  PubMed  CAS  Google Scholar 

  • Negi S, Ivanchenko MG, Muday GK (2008) Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J 55:175–187

    Article  PubMed  CAS  Google Scholar 

  • Negi S, Sukumar P, Liu X, Cohen JD, Muday GK (2010) Genetic dissection of the role of ethylene in regulating auxin-dependent lateral and adventitious root formation in tomato. Plant J 61:3–15

    Article  PubMed  CAS  Google Scholar 

  • Normanly J (2010) Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harb Perspect Biol 2:a001594

    Article  PubMed  CAS  Google Scholar 

  • O’Neill DP, Ross JJ (2002) Auxin regulation of the gibberellin pathway in pea. Plant Physiol 130:1974–1982

    Article  PubMed  CAS  Google Scholar 

  • Okushima Y, Fukaki H, Onoda M, Teologis A, Tasaka M (2007) ARF7 and ARF19 regulate lateral root formation via direct avtivation of LBD/ASL genes in Arabidopsis. Plant Cell 19:118–130

    Article  PubMed  CAS  Google Scholar 

  • Osmont KS, Sibout R, Hardtke CS (2007) Hidden branches: developments in root system architecture. Annu Rev Plant Biol 58:93–113

    Article  PubMed  CAS  Google Scholar 

  • Ouyang J, Shao X, Li J (2000) Indole-3-glycerol phosphate, a branchpoint of indole-3-acetic acid biosynthesis from the tryptophan biosynthetic pathway in Arabidopsis thaliana. Plant J 24:327–333

    Article  PubMed  CAS  Google Scholar 

  • Overvoorde P, Fukaki H, Beeckman T (2010) Auxin control of root development. Cold Spring Harb Perspect Biol 2(6):a001537

    Article  PubMed  CAS  Google Scholar 

  • Palavan-Unsal N (1987) Polyamine metabolism in the roots of Phaseolus vulgaris. Interaction of inhibitors of polyamine biosynthesis with putrescine in growth and polyamine biosynthesis. Plant Cell Physiol 28:565–572

    CAS  Google Scholar 

  • Paponov IA, Teale WD, Trebar M, Blilou I, Palme K (2005) The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends Plant Sci 10:170–177

    Article  PubMed  CAS  Google Scholar 

  • Pati PK, Sharma M, Nagar PK (2010) The Role of Polyamines during Rhizogenesis. In: Advances in Plant Physiol- An Int. Treatise Series Vol 12: Edited by A. Hemantaranjan, Scientific Pub., India. pp 390–414

  • Péret B, De Rybel B, Casimiro I, Benkova′ E, Swarup R, Laplaze L, Beeckman T, Bennett MJ (2009) Arabidopsis lateral root development: an emerging story. Trends Plant Sci 14:399–408

    Article  PubMed  CAS  Google Scholar 

  • Perilli S, Moubayidin L, Sabatini S (2010) The molecular basis of cytokinin function. Curr Opin Plant Biol 13:21–26

    Article  PubMed  CAS  Google Scholar 

  • Pickett FB, Wilson AK, Estelle M (1990) The aux1 mutation of Arabidopsis confers both auxin and ethylene resistance. Plant Physiol 94:1462–1466

    Article  PubMed  CAS  Google Scholar 

  • Pitts RJ, Cernac A, Estelle M (1998) Auxin and ethylene promote root hair elongation in Arabidopsis. Plant J 16:553–560

    Article  PubMed  CAS  Google Scholar 

  • Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN (1999) The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE gene. Plant J 18:111–119

    Article  PubMed  CAS  Google Scholar 

  • Quinet M, Ndayiragije A, Lefevre I, Lambillotte B, Dupont-Gillian CC, Lutts S (2010) Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance. J Exp Bot 61:2719–2733

    Article  PubMed  CAS  Google Scholar 

  • Quint M, Gray WM (2006) Auxin signaling. Curr Opin Plant Biol 9:448–453

    Article  PubMed  CAS  Google Scholar 

  • Rahman A, Amakawa T, Goto N, Tsurumi S (2001) Auxin is a positive regulator for ethylene-mediated response in the growth of Arabidopsis roots. Plant Cell Physiol 42:301–307

    Article  PubMed  CAS  Google Scholar 

  • Ramos JA, Zener N, Leyser O, Callis J (2001) Rapid degradation of auxin/indoleacetic acid proteins requires conserved amino acids of domain II and is proteasome dependent. Plant Cell 13:2349–2360

    PubMed  CAS  Google Scholar 

  • Riefler M, Novak O, Strnad M, Schmullinga T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, cytokinin metabolism. Plant Cell 18:40–54

    Article  PubMed  CAS  Google Scholar 

  • Rock CD, Sun X (2005) Crosstalk between ABA and auxin signalling pathways in roots of Arabidopsis thaliana (L.) Heynh. Planta 222:98–106

    Article  PubMed  CAS  Google Scholar 

  • Ruegger M, Dewey E, Gray WM, Hobbie L, Turner J, Estelle M (1998) The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p. Genes Dev 12:198–207

    Article  PubMed  CAS  Google Scholar 

  • Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L, de Ruijter N, Cardoso C, Lopez-Raez JA, Matusova R, Bours R, Verstappen F, Bouwmeester HJ (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol 155:721–734

    Article  PubMed  CAS  Google Scholar 

  • Ruzicka K, Ljung K, Vanneste S, Podhorska R, Beechman T, Friml J, Benkova E (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19:2197–2212

    Article  PubMed  CAS  Google Scholar 

  • Sakai H, Honma T, Aoyama T, Sato S, Kato T, Tabata S, Oka A (2001) ARR1, a transcription factor for genes immediately responsive to cytokinins. Science 294:1519–1521

    Article  PubMed  CAS  Google Scholar 

  • Santner A, Mark Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature 459:1071–1078

    Article  PubMed  CAS  Google Scholar 

  • Shimada A, Ueguchi-Tanaka M, Nakatsu T, Nakajima M, Naoe Y, Ohmiya H, Kato H, Matsuoka M (2008) Structural basis for gibberellins recognition by its receptor GID1. Nature 456:520–523

    Article  PubMed  CAS  Google Scholar 

  • Shkolnik-Inbar D, Bar-Zvi D (2010) ABI4 mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis. Plant Cell 22:3560–3573

    Article  PubMed  CAS  Google Scholar 

  • Silverstone AL, Chang CW, Krol E, Sun TP (1997) Developmental regulation of the gibberellins biosynthetic gene GAI1 in Arabidopsis thaliana. Plant J 12:9–19

    Article  PubMed  CAS  Google Scholar 

  • Slade WO, Ray WK, Patricia M, Williams PM, Winkel BSJ, Helm RF (2012) Effects of exogenous auxin and ethylene on the Arabidopsis root proteome. Phytochemistry 84:18–23

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Davies PJ (1985) Separation and quantification of polyamines in plant tissue by high performance liquid chromatography of their dansyl derivatives. Plant Physiol 78:89–91

    Article  PubMed  CAS  Google Scholar 

  • Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM (2005) A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 17:2230–2242

    Article  PubMed  CAS  Google Scholar 

  • Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185

    Article  PubMed  CAS  Google Scholar 

  • Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Doležal K, Schlereth A, Jürgens G, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191

    Article  PubMed  CAS  Google Scholar 

  • Strader LC, Bartel B (2008) A new path to auxin. Nat Chem Biol 4:337–339

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Xu Y, Ye S, Jiang H, Chen Q, Liu F, Zhou W, Chen R, Li X, Tietz O, Wu X, Cohen JD, Palme K, Li C (2009) Arabidopsis ASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation. Plant Cell 21:1495–1511

    Article  PubMed  CAS  Google Scholar 

  • Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, Bennett M (2001) Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev 15:2648–2653

    Article  PubMed  CAS  Google Scholar 

  • Swarup R, Parry G, Graham N, Allen T, Bennett M (2002) Auxin cross-talk: integration of signalling pathways to control plant development. Plant Mol Biol 49:411–426

    Article  PubMed  CAS  Google Scholar 

  • Swarup R, Perry P, Hagenbeek D, Van Der Straeten D, Beemster GT, Sandberg G, Bhalerao R, Ljung K, Bennet MJ (2007) Ethlene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19:2186–2196

    Article  PubMed  CAS  Google Scholar 

  • Szekeres M, Németh K, Koncz-Kálmán Z, Mathur J, Kauschmann A, Altmann T, Rédei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and deetiolation in Arabidopsis. Cell 85:171–182

    Article  PubMed  CAS  Google Scholar 

  • Szemenyei H, Hannon M, Long JA (2008) TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 319:1384–1386

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Asami T, Yoshida S, Nakamura Y, Matsuo T, Okamoto S (2005) Brassinosteroid homeostasis in Arabidopsis is ensured by feedback expressions of multiple genes involved in its metabolism. Plant Physiol 138:1117–1125

    Article  PubMed  CAS  Google Scholar 

  • Tassoni A, Van Buuren M, Franceschetti M, Fornalè S, Bagni N (2000) Polyamine content and metabolism in Arabidopsis thaliana and effect of spermidine on plant development. Plant Physiol Biochem 38:383–393

    Article  CAS  Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859

    Article  PubMed  CAS  Google Scholar 

  • Tian Q, Nagpal P, Reed JW (2003) Regulation of Arabidopsis SHY2/IAA3 protein turnover. Plant J 36:643–651

    Article  PubMed  CAS  Google Scholar 

  • Tiwari SB, Wang XJ, Hagen G, Guilfoyle TJ (2001) Aux/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell 13:2809–2822

    PubMed  CAS  Google Scholar 

  • To JP, Kieber JJ (2008) Cytokinin signalling: two-components and more. Trends Plant Sci 13:85–92

    Article  PubMed  CAS  Google Scholar 

  • To JP, Haberer G, Ferreira FJ, Deruère J, Mason MG, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2004) Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signalling. Plant Cell 16:658–671

    Article  PubMed  CAS  Google Scholar 

  • Ubeda-Tomas S, Swarup R, Coates J, Swarup K, Laplaze L, Beemster GT, Hedden P, Bhalerao R, Bennett MJ (2008) Root growth in Arabidopsis requires gibberellin/DELLA signalling in the endodermis. Nat Cell Biol 10:625–628

    Article  PubMed  CAS  Google Scholar 

  • Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YI, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693–698

    Article  PubMed  CAS  Google Scholar 

  • Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Vellosillo T, Martinez M, Lopez MA, Vicente J, Cascon T, Dolan L, Hamberg M, Castresana C (2007) Oxylipins produced by the 9-lipoxygenase pathway in Arabidopsis regulate lateral root development and defence responses through a specific signalling cascade. Plant Cell 19:831–846

    Article  PubMed  CAS  Google Scholar 

  • Vieten A, Sauer M, Brewer PB, Friml J (2007) Molecular and cellular aspects of auxin transport-mediated development. Trends Plant Sci 12:160–168

    Article  PubMed  CAS  Google Scholar 

  • Voegele A, Linkies A, Muller K, Leubner-Metzger G (2011) Members of the gibberellin receptor gene family GID1 (GIBBERELLIN INSENSITIVE DWARF1) play distinct roles during Lepidium sativum and Arabidopsis thaliana seed germination. J Expt Bot 62:5131–5147

    Article  CAS  Google Scholar 

  • Walker L, Estelle M (1998) Molecular mechanisms of auxin action. Curr Opin Plant Biol 1:434–439

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Goshe MB, Soderblom EJ, Phinney BS, Kuchar JA, Li J, Asami T, Yoshida S, Huber SC, Clouse SD (2005) Identification and functional analysis of in vivo phosphorylation sites of the Arabidopsis BRASSINOSTEROID INSENSITIVE1 receptor kinase. Plant Cell 17:1685–1703

    Article  PubMed  CAS  Google Scholar 

  • Wang JR, Hu H, Wang GH, Li J, Chen JY, Wu P (2009) Expression of PIN Genes in Rice (Oryza sativa L.): tissue specificity and regulation by hormones. Mol Plant 2:823–831

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Hua D, He J, Duan Y, Chen Z, Hong X, Gong Z (2011) Auxin response factor2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis. PLoS Genet 7:e1002172

    Article  PubMed  CAS  Google Scholar 

  • Watson MB, Emory KK, Piatak RM, Malmberg RL (1998) Arginine decarboxylase (polyamine synthesis) mutants of Arabidopsis thaliana exhibit altered root growth. Plant J 13:231–239

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Schmulling T (2009) Cytokinin action in plant development. Curr Opin Plant Biol 12:527–538

    Article  PubMed  CAS  Google Scholar 

  • Willige BC, Isono E, Richter R, Zourelidou M, Schwechheimer C (2011) Gibberellin regulates PIN-FORMED abundance and is required for auxin transport-dependent growth and development in Arabidopsis thaliana. Plant Cell 23:2184–2195

    Article  PubMed  CAS  Google Scholar 

  • Wilson AK, Pickett BF, Turner JC, Estelle M (1990) A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid. Mol Gen Genet 222:377–383

    Article  PubMed  CAS  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Yoneyama K, Yoneyama K (2010) The strigolactone story. Annu Rev Phytopathol 48:93–117

    Article  PubMed  CAS  Google Scholar 

  • Yang YK, Lee SY, Park WT, Park NI, Park SU (2010) Exogenous auxins and polyamines enhance growth and rosmarinic acid production in hairy root cultures of Nepeta cataria L. Plant Omics 3:190–193

    CAS  Google Scholar 

  • Yang CJ, Zhang C, Lu YN, Jin JQ, Wang XL (2011) The mechanisms of brassinosteroids’ action: from signal transduction to plant development. Mol Plant 4:588–600

    Article  PubMed  CAS  Google Scholar 

  • Zazímalová E, Murphy AS, Yang H, Hoyerová K, Hosek P (2010) Auxin transporters—why so many? Cold Spring Harb Perspect Biol 2:a001552

    Article  PubMed  CAS  Google Scholar 

  • Zener N, Ellsmore A, Leasure C, Callis J (2001) Auxin modulates the degradation rate of Aux/IAA proteins. Proc Natl Acad Sci USA 98:11795–11800

    Article  Google Scholar 

  • Zhang R, Wang B, Ouyang J, Li J, Wang Y (2008a) Arabidopsis indole synthase, a homolog of tryptophan synthase alpha, is an enzyme involved in the Trp-independent indole-containing metabolite biosynthesis. J Integr Plant Biol 50:1070–1077

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Xiong Y, DeFraia C, Schmelz E, Mou Z (2008b) The Arabidopsis MAP kinase kinase 7. A crosstalk point between auxin signaling and defense responses? Plant Signal Behav 3:272–274

    Article  PubMed  Google Scholar 

  • Zhao Y, Hull AK, Gupta NR, Goss KA, Alonso J, Ecker JR, Normanly J, Chory J, Celenza JL (2002) Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev 16:3100–3112

    Google Scholar 

  • Zhao Y, Hu Y, Dai M, Huang L, Zhou DX (2009) The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice. Plant Cell 21:736–748

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratap Kumar Pati.

Additional information

Communicated by P. Kumar.

A contribution to the Special Issue: Plant Hormone Signaling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saini, S., Sharma, I., Kaur, N. et al. Auxin: a master regulator in plant root development. Plant Cell Rep 32, 741–757 (2013). https://doi.org/10.1007/s00299-013-1430-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1430-5

Keywords

Navigation