Skip to main content
Log in

Expression of phytochelatin synthase from aquatic macrophyte Ceratophyllum demersum L. enhances cadmium and arsenic accumulation in tobacco

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Phytochelatin synthase (PCS), the key enzyme involved in heavy metal detoxification and accumulation has been used from various sources to develop transgenic plants for the purpose of phytoremediation. However, some of the earlier studies provided contradictory results. Most of the PCS genes were isolated from plants that are not potential metal accumulators. In this study, we have isolated PCS gene from Ceratophyllum demersum cv. L. (CdPCS1), a submerged rootless aquatic macrophyte, which is considered as potential accumulator of heavy metals. The CdPCS1 cDNA of 1,757 bp encodes a polypeptide of 501 amino acid residues and differs from other known PCS with respect to the presence of a number of cysteine residues known for their interaction with heavy metals. Complementation of cad1-3 mutant of Arabidopsis deficient in PC (phytochelatin) biosynthesis by CdPCS1 suggests its role in the synthesis of PCs. Transgenic tobacco plants expressing CdPCS1 showed several-fold increased PC content and precursor non-protein thiols with enhanced accumulation of cadmium (Cd) and arsenic (As) without significant decrease in plant growth. We conclude that CdPCS1 encodes functional PCS and may be part of metal detoxification mechanism of the heavy metal accumulating plant C. demersum.

Key message

Heterologous expression of PCS gene from C. demersum complements Arabidopsis cad1-3 mutant and leads to enhanced accumulation of Cd and As in transgenic tobacco.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

As(V):

Arsenate

Cd:

Cadmium

CdPCS1/cad1-3 :

cad1-3 mutant plants transformed with CdPCS1 construct

γ-EC:

Gamma-glutamylcysteine

FW:

Fresh weight

GSH:

Glutathione

PC:

Phytochelatin

PCS:

Phytochelatin synthase

WT:

Wild type

References

  • Asif M, Trivedi PK, Solomos T, Tucker M (2006) Isolation of high quality RNA from apple fruit. J Agric Food Chem 54:5227–5229

    Article  PubMed  CAS  Google Scholar 

  • Blum R, Beck A, Korte A, Stengel A, Letzel T, Lendzian K, Grill E (2007) Function of phytochelatin synthase in catabolism of glutathione-conjugates. Plant J 49:740–749

    Article  PubMed  CAS  Google Scholar 

  • Brunetti P, Zanella L, Proia A, De Paolis A, Falasca G, Altamura MM, Sanità di Toppi L, Costantino P, Cardarelli M (2011) Cadmium tolerance and phytochelatin content of Arabidopsis seedlings over-expressing the phytochelatin synthase gene AtPCS1. J Exp Bot 62:5509–5519

    Article  PubMed  CAS  Google Scholar 

  • Bunluesin S, Kruatrachue M, Pokethitiyook P, Lanza GR, Upatham ES, Soonthornsarathool V (2004) Plant screening and comparison of Ceratophyllum demersum and Hydrilla verticillata for cadmium accumulation. Bull Environ Contam Toxicol 73:591–598

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Zhou J, Goldsbrough PB (1997) Characterization of phytochelatin synthase from tomato. Plant Physiol 101:165–172

    Article  CAS  Google Scholar 

  • Clemens S, Kim EJ, Neumann D, Schroeder JL (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18:3325–3333

    Article  PubMed  CAS  Google Scholar 

  • Clemens S, Schroeder JI, Degenkolb T (2001) Caenorhabditis elegans expresses a functional phytochelatin synthase. Eur J Biochem 268:3640–3643

    Article  PubMed  CAS  Google Scholar 

  • Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol 3:211–216

    PubMed  CAS  Google Scholar 

  • Cobbett CS, Goldsbrough PB (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  PubMed  CAS  Google Scholar 

  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acid Res 16:10881–10890

    Article  PubMed  CAS  Google Scholar 

  • Gasic K, Korban SS (2007) Expression of Arabidopsis phytochelatin synthase in Indian mustard (Brassica juncea) plants enhances tolerance for Cd and Zn. Planta 225:1277–1285

    Article  PubMed  CAS  Google Scholar 

  • Gisbert C, Ros R, De Haro A, Walker DJ, Pilar BM, Serrano R, Navarro- Aviñó J (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303:440–444

    Article  PubMed  CAS  Google Scholar 

  • Glaeser H, Coblenz A, Kruczek R, Ruttke I, Ebert-Jung A, Wolf K (1991) Glutathione metabolism and heavy metal detoxification in Schizosaccharomyces pombe. Curr Genet 19:207–213

    Article  CAS  Google Scholar 

  • Grill E, Loffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy metal-binding peptides of plants are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86:6838–6842

    Article  PubMed  CAS  Google Scholar 

  • Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O’Conell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast, Schizosaccharomyces pombe. Plant Cell 11:1153–1164

    PubMed  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eicholtz D, Rogers SG, Fraley RT (1985) A simple method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Howden R, Goldsbrough PB, Andersen CR, Cobbett CS (1995) Cadmium sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107:1059–1066

    Article  PubMed  CAS  Google Scholar 

  • Inouhe M (2005) Phytochelatins. Braz J Plant Physiol 17:65–78

    Article  CAS  Google Scholar 

  • Iturbe-Ormaetxe I, Heras B, Matamoros MA, Ramos J, Moran JF, Becana M (2002) Cloning and functional characterization of a homoglutathione synthetase from pea nodules. Physiol Plant 115:69–73

    Article  PubMed  CAS  Google Scholar 

  • Kesari R, Trivedi PK, Nath P (2007) Ethylene-induced ripening in banana evokes expression of defense and stress related genes in fruit tissue. Postharvest Biol Technol 46:136–143

    Article  CAS  Google Scholar 

  • Keskinkan O, Goksu MZ, Basibuyuk M, Forster CF (2004) Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum). Bioresour Technol 92:197–200

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Moon JS, Ko TS, Petros D, Goldsbrough PB, Korban SS (2003) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656–663

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Dhankher OM, Carreira L, Lee D, Chen A, Schroeder JI, Balish RS, Meagher RB (2004) Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol 45:1787–1797

    Article  PubMed  CAS  Google Scholar 

  • Li J, Guo J, Xu W, Ma M (2006) Enhanced cadmium accumulation in transgenic tobacco expressing the phytochelatin synthase gene of Cynodon dactylon L. J Integr Plant Biol 48:928–937

    Article  CAS  Google Scholar 

  • Liu GY, Zhang YX, Chai TY (2011) Phytochelatin synthase of Thlaspi caerulescens enhanced tolerance and accumulation of heavy metals when expressed in yeast and tobacco. Plant Cell Rep 30:1067–1076

    Article  PubMed  CAS  Google Scholar 

  • Martínez M, Bernal P, Almela C, Vélez D, García-Agustín P, Serrano R, Navarro- Aviñó J (2006) An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens, with yields of 100 times more biomass in mine soils. Chemosphere 64:478–485

    Article  PubMed  Google Scholar 

  • Mendoza-Cózatl DG, Butko E, Springer F, Torpey JW, Komives EA, Kehr J (2008) Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J 54:249–259

    Article  PubMed  Google Scholar 

  • Minocha R, Thangavel P, Dhankher OP, Long S (2008) Separation and quantification of monothiols and phytochelatins from a wide variety of cell cultures and tissues of tree and other plants using high performance liquid chromatography. J Chromatogr A 1207:72–83

    Article  PubMed  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Trivedi PK (2008) Thiol metabolism and antioxidant systems complement each other during arsenate detoxification in Ceratophyllum demersum L. Aquat Toxicol 31:205–215

    Article  Google Scholar 

  • Mishra S, Tripathi RD, Srivastava S, Dwivedi S, Trivedi PK, Dhankher OP, Khare A (2009) Thiol metabolism play significant role during cadmium detoxification by Ceratophyllum demersum L. Bioresour Technol 100:2155–2161

    Article  PubMed  CAS  Google Scholar 

  • Nriagu JO, Pacyna JM (1998) Quantitative assessment of worldwide contamination of air, water and soils with trace metals. Nature 333:134–139

    Article  Google Scholar 

  • Oven M, Page JE, Zenk MH, Kutchan TM (2002) Molecular characterization of the homo-phytochelatin synthase of soybean Glycine max: relation to phytochelatin synthase. J Biol Chem 277:4747–4754

    Article  PubMed  CAS  Google Scholar 

  • Pomponi M, Censi V, Di Girolamo V, De Paolis A, di Toppi LS, Aromolo R, Costantino P, Cardarelli M (2006) Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd2+ tolerance and accumulation but not translocation to the shoot. Planta 223:180–190

    Article  PubMed  CAS  Google Scholar 

  • Rea PA (2012) Phytochelatin synthase: of a protease a peptide polymerase made. Physiol Plant. doi:10.1111/j.1399-3054.2012.01571.x

  • Rea PA, Vatamaniuk OK, Rigden DJ (2004) Weeds, worms, and more. Papain’s long-lost cousin, phytochelatin synthase. Plant Physiol 136:2463–2474

    Article  PubMed  CAS  Google Scholar 

  • Robinson B, Kim N, Marchetti M, Moni C, Schroeter L, Van den Dijssel C, Milne G, Clothier B (2006) Arsenic hyperaccumulation by aquatic macrophyte in the Taupo volcanic zone NZ. Environ Exp Bot 58:206–215

    Article  CAS  Google Scholar 

  • Rother M, Krauss G-J, Grass G, Wesenberg D (2006) Sulphate assimilation under Cd2+ stress in Physcomitrella patens—combined transcript, enzyme and metabolite profiling. Plant Cell Environ 29:1801–1811

    Article  PubMed  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sarry JE, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet JB, Vailhen D, Amecraz B, Moulin C, Ezan E, Garin J, Bourguignon J (2006) The early responses of Arabidopsis thaliana cells to Cadmium exposure explored by protein and metabolite profiling analysis. Proteomics 6:2180–2198

    Article  PubMed  CAS  Google Scholar 

  • Schmoger ME, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793–801

    Article  PubMed  CAS  Google Scholar 

  • Sun Q, Liu WB, Wang C (2011) Different response of phytochelatins in two aquatic macrophytes exposed to cadmium at environmentally relevant concentrations. Afr J Biotechnol 10:6292–6299

    Article  CAS  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJ (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165

    Article  PubMed  CAS  Google Scholar 

  • Tsuji N, Nishikori S, Iwabe O, Matsumoto S, Shiraki K, Miyasaka H, Takagi M, Miyamoto K, Hirata K (2005) Comparative analysis of the two-step reaction catalyzed by prokaryotic and eukaryotic phytochelatin synthase by an ion pair liquid chromatography assay. Planta 222:181–191

    Article  PubMed  CAS  Google Scholar 

  • Tuli R, Chakrabarty D, Trivedi PK, Tripathi RD (2010) Recent advances in arsenic accumulation and metabolism in rice. Mol Breed 26:307–323

    Article  CAS  Google Scholar 

  • Umebese CE, Motajo AF (2008) Accumulation, tolerance and impact of aluminium, copper and zinc on growth and nitrate reductase activity of Ceratophyllum demersum (Hornwort). J Environ Biol 29:197–200

    PubMed  CAS  Google Scholar 

  • Vatamaniuk OK, Mari S, Lu YP, Rea PA (1999) AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc Natl Acad Sci USA 96:7110–7115

    Article  PubMed  CAS  Google Scholar 

  • Vatamaniuk OK, Mari S, Lu YP, Rea PA (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase. J Biol Chem 275:31451–31459

    Article  PubMed  CAS  Google Scholar 

  • Vatamaniuk OK, Bucher EA, Ward JT, Rea PA (2001) A new pathway for heavy metal detoxification in animals: phytochelatin synthase is required for cadmium tolerance in Caenorhabditis elegans. J Biol Chem 276:20817–20820

    Article  PubMed  CAS  Google Scholar 

  • Vatamaniuk OK, Mari S, Lang A, Chalasani S, Demkiv L, Rea PA (2004) Phytochelatin synthase, a dipeptidyltransferase that undergoes multisite acylation with γ-glutamycysteine during catalysis. Stoichiometric and site-directed mutagenic analysis of Arabidopsis thaliana PCS1-catalyzed phytochelatin synthesis. J Biol Chem 279:22449–22460

    Article  PubMed  CAS  Google Scholar 

  • Vestergaard M, Matsumoto S, Nishikori S, Shiraki K, Hirata K, Takagi M (2008) Chelation of cadmium ions by phytochelatin synthase: role of the cysteine-rich C-terminal. Anal Sci 24:277–281

    Article  PubMed  CAS  Google Scholar 

  • Vivares D, Arnoux P, Pignol D (2005) A papain-like enzyme at work: native and acyl-enzyme intermediate structures in phytochelatin synthesis. Proc Natl Acad Sci USA 102:18848–18853

    Article  PubMed  CAS  Google Scholar 

  • Wojas S, Clemens S, Hennig J, Sklodowska A, Kopera E, Schat H, Bal W, Antosiewicz DM (2008) Overexpression of phytochelatin synthase in tobacco: distinctive effects of AtPCS1 and CePCS genes on plant response to cadmium. J Exp Bot 92:1–15

    Google Scholar 

  • Wojas S, Clemens S, Skłodowska A, Maria Antosiewicz D (2010a) Arsenic response of AtPCS1- and CePCS-expressing plants—effects of external As(V) concentration on As-accumulation pattern and NPT metabolism. J Plant Physiol 167:169–175

    Article  PubMed  CAS  Google Scholar 

  • Wojas S, Ruszczyńska A, Bulska E, Clemens S, Antosiewicz DM (2010b) The role of subcellular distribution of cadmium and phytochelatins in the generation of distinct phenotypes of AtPCS1- and CePCS3-expressing tobacco. J Plant Physiol 167:981–988

    Article  PubMed  Google Scholar 

  • Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174:1–8

    Article  PubMed  CAS  Google Scholar 

  • Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Christopher Cobbett (University of Melbourne, Australia) for providing cad1-3 seeds. DS, RK and SM acknowledge Council of Scientific and Industrial Research, Govt. of India for Senior Research Fellowships. The authors are grateful to the Department of Biotechnology, New Delhi for providing financial support to carry out the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabodh Kumar Trivedi.

Additional information

Communicated by P. Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 37 kb)

299_2012_1283_MOESM2_ESM.pptx

Fig. S1 Schematic representation of sequence alignment of PCS protein sequences from selected organisms such as Arabidopsis thaliana (At) and Triticum aestivum (Ta) chosen for plants; Schizosaccharomyces pombe (Sp) chosen for fungi and C. demersum (Cd) chosen as the case of present study. Black vertical bars denote cysteine residues, black vertical bars with asterisks denote conserved cysteine residues present in N-terminal. Red vertical bar with asterisks denotes conserved His-162 and blue vertical bar denotes conserved Asp-180, considered as an essential part of catalytic domain of the enzyme. Supplementary material 2 (PPT 227 kb)

299_2012_1283_MOESM3_ESM.pptx

Fig. S2 Fluorescence HPLC chromatograms of the mBBr-labeled plant extracts from WT and transgenic lines. Root extracts of WT and transgenic lines grown in absence of heavy metals (0 μM) were derivatized with mBBr and separated by HPLC. Peaks corresponding to cysteine, γ-EC, GSH, PC2, PC3 and PC4 standards are indicated in the chromatogram. Other unknown non-protein thiols (Peaks A-E) which are differentially accumulated in transgenic lines with respect to WT are marked. Supplementary material 3 (PPT 187 kb)

299_2012_1283_MOESM4_ESM.pptx

Fig. S3 Fluorescence HPLC chromatograms of the mBBr-labeled plant extracts from WT and transgenic lines. Root extracts of WT and transgenic lines exposed on Cd (200 μM) for 3 days were derivatized with mBBr and separated by HPLC. Peaks corresponding to cysteine, γ-EC, GSH, PC2, PC3 and PC4 standards are indicated in the chromatogram. Other unknown non-protein thiols (Peaks A-E) which are differentially accumulated in transgenic lines with respect to WT are marked. Supplementary material 4 (PPT 328 kb)

299_2012_1283_MOESM5_ESM.pptx

Fig. S4 Fluorescence HPLC chromatograms of the mBBr-labeled plant extracts from WT and transgenic lines. Root extracts of WT and transgenic lines exposed on AsV (200 μM) for 3 days were derivatized with mBBr and separated by HPLC. Peaks corresponding to cysteine, γ-EC, GSH, PC2, PC3 and PC4 standards are indicated in the chromatogram. Other unknown non-protein thiols (Peaks A-E) which are differentially accumulated in transgenic lines with respect to WT are marked. Supplementary material 5 (PPT 180 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shukla, D., Kesari, R., Mishra, S. et al. Expression of phytochelatin synthase from aquatic macrophyte Ceratophyllum demersum L. enhances cadmium and arsenic accumulation in tobacco. Plant Cell Rep 31, 1687–1699 (2012). https://doi.org/10.1007/s00299-012-1283-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-012-1283-3

Keywords

Navigation