Skip to main content
Log in

The Arabidopsis CORI3 promoter contains two cis-acting regulatory regions required for transcriptional activity in companion cells

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Companion cells are metabolically active and functionally specialized cells that behave as terminals for the transport of materials between phloem and the surrounding tissue. Although previous research has clarified the distinct function of companion cells, it is still largely unknown how plants establish and maintain the special identity of these cells. To shed further light on this issue, we carried out expressed sequence tag (EST) analysis. To minimize the difficulty of dissociating and gathering intact companion cells, vascular strings with an abundant content of companion cells were excised from the petioles of Brassica napus. By random sequencing with a string-specific cDNA library derived by suppression subtractive hybridization between the string itself and the petiole from which it had been removed, we identified 377 ESTs and assembled them into 247 EST groups. The most frequent EST was ExBdl-102 (15 of 377 ESTs), which showed the highest sequence similarity to the Arabidopsis CORI3 (CORONATINE INDUCED 3) gene. The CORI3 promoter:GUS showed predominant expression in the vascular tissue of Arabidopsis. Through transient expression assay using Brassica vasculature and gene-gun-mediated transient assay, we found two integrated cis-regulatory regions of the CORI3 promoter. This work has provided not only string-specific EST information and shown that two novel cis-regulatory regions sustain transcriptional activity in companion cells, but also a series of procedures for efficiently examining the transcriptional framework of companion cells by exploiting the histochemical advantage of B. napus as an experimental material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868

    Article  PubMed  CAS  Google Scholar 

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78. doi:10.1105/tpc.006130

    Article  PubMed  CAS  Google Scholar 

  • Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056. doi:10.1126/science.1115983

    Article  PubMed  CAS  Google Scholar 

  • Antosiewicz DM, Purugganan MM, Polisensky DH, Braam J (1997) Cellular localization of Arabidopsis xyloglucan endotransglycosylase-related proteins during development and after wind stimulation. Plant Physiol 115:1319–1328

    Article  PubMed  CAS  Google Scholar 

  • Ayre BG, Blair JE, Turgeon R (2003) Functional and phylogenetic analyses of a conserved regulatory program in the phloem of minor veins. Plant Physiol 133:1229–1239. doi:10.1104/pp.03.027714

    Article  PubMed  CAS  Google Scholar 

  • Balachandran S, Xiang Y, Schobert C, Thompson GA, Lucas WJ (1997) Phloem sap proteins from Cucurbita maxima and Ricinus communis have the capacity to traffic cell to cell through plasmodesmata. Proc Natl Acad Sci USA 94:14150–14155

    Article  PubMed  CAS  Google Scholar 

  • Bechtold N, Pelletier G (1998) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol Biol 82:259–266

    PubMed  CAS  Google Scholar 

  • Bostwick DE, Dannenhoffer JM, Skaggs MI, Lister RM, Larkins BA, Thompson GA (1992) Pumpkin phloem lectin genes are specifically expressed in companion cells. Plant Cell 4:1539–1548

    Article  PubMed  CAS  Google Scholar 

  • Buhtz A, Pieritz J, Springer F, Kehr J (2010) Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC Plant Biol 10:64. doi:10.1186/1471-2229-10-64

    Article  PubMed  Google Scholar 

  • Cronshaw J (1981) Phloem structure and function. Ann Rev Plant Physiol 32:465–484

    Article  CAS  Google Scholar 

  • Dannenhoffer JM, Schulz A, Skaggs MI, Bostwick DE, Thompson GA (1997) Expression of the phloem lectin is developmentally linked to vascular differentiation in cucurbits. Planta 201:405–414

    Article  CAS  Google Scholar 

  • Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030

    Article  PubMed  CAS  Google Scholar 

  • Dinant S, Clark AM, Zhu Y, Vilaine F, Palauqui JC, Kusiak C, Thompson GA (2003) Diversity of the superfamily of phloem lectins (phloem protein 2) in angiosperms. Plant Physiol 131:114–128

    Article  PubMed  CAS  Google Scholar 

  • Endo A, Sawada Y, Takahashi H, Okamoto M, Ikegami K, Koiwai H, Seo M, Toyomasu T, Mitsuhashi W, Shinozaki K, Nakazono M, Kamiya Y, Koshiba T, Nambara E (2008) Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol 147:1984–1993. doi:10.1104/pp.08.116632

    Article  PubMed  CAS  Google Scholar 

  • Giakountis A, Coupland G (2008) Phloem transport of flowering signals. Curr Opin Plant Biol 11:687–694. doi:10.1016/j.pbi.2008.10.003

    Article  PubMed  CAS  Google Scholar 

  • Gomez G, Pallas V (2001) Identification of an in vitro ribonucleoprotein complex between a viroid RNA and a phloem protein from cucumber plants. Mol Plant-Microbe Interact 14:910–913

    Article  PubMed  CAS  Google Scholar 

  • Gong Z, Koiwa H, Cushman MA, Ray A, Bufford D, Kore-eda S, Matsumoto TK, Zhu J, Cushman JC, Bressan RA, Hasegawa PM (2001) Genes that are uniquely stress regulated in salt overly sensitive (sos) mutants. Plant Physiol 126:363–375

    Article  PubMed  CAS  Google Scholar 

  • Guivarc’h A, Spena A, Noin M, Besnard C, Chriqui D (1996) The pleiotropic effects induced by the rol C gene in transgenic plants are caused by expression restricted to protophloem and companion cells. Transgenic Res 5:3–11

    Article  Google Scholar 

  • Guo WJ, Bundithya W, Goldsbrough PB (2003) Characterization of Arabidopsis metallothionein gene family: tissue-specific expression and induction during senescence and in response to copper. New Phytol 159:369–381. doi:10.1046/j.1469-8137.2003.00813.x

    Article  CAS  Google Scholar 

  • Guo WJ, Meetam M, Goldsbrough PB (2008) Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol 146:1697–1706. doi:10.1104/pp.08.115782

    Article  PubMed  CAS  Google Scholar 

  • Haritatos E, Ayre BG, Turgeon R (2000) Identification of phloem involved in assimilate loading in leaves by the activity of the galactinol synthase promoter. Plant Physiol 123:929–938

    Article  PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  • Imlau A, Truernit E, Sauer N (1999) Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissues. Plant Cell 11:309–322

    Article  PubMed  CAS  Google Scholar 

  • Ivashikina N, Deeken R, Ache P, Kranz E, Pommerrenig B, Sauer N, Hedrich R (2003) Isolation of AtSUC2 promoter-GFP-marked companion cells for patch-clamp studies and expression profiling. Plant J 36:931–945. doi:10.1046/j.1365-313X.2003.01931.x

    Article  PubMed  CAS  Google Scholar 

  • Kehr J, Buhtz A (2008) Long distance transport and movement of RNA through the phloem. J Exp Bot 59:85–92. doi:10.1093/jxb/erm176

    Article  PubMed  CAS  Google Scholar 

  • Le Hir R, Beneteau J, Bellini C, Vilaine F, Dinant S (2008) Gene expression profiling: keys for investigating phloem functions. Trends Plant Sci 13:273–280. doi:10.1016/j.tplants.2008.03.006

    Article  PubMed  CAS  Google Scholar 

  • Lopukhina A, Dettenberg M, Weiler EW, Holländer-Czytko H (2001) Cloning and characterization of a coronatine-regulated tyrosine aminotransferase from Arabidopsis. Plant Physiol 126:1678–1687

    Article  PubMed  CAS  Google Scholar 

  • Lough TJ, Lucas WJ (2006) Integrative plant biology: role of phloem long-distance macromolecular trafficking. Ann Rev Plant Biol 57:203–232. doi:10.1146/annurev.arplant.56.032604.144145

    Article  CAS  Google Scholar 

  • Matsuda Y, Liang G, Zhu Y, Ma F, Nelson RS, Ding B (2002) The Commelina yellow mottle virus promoter drives companion-cell-specific gene expression in multiple organs of transgenic tobacco. Protoplasma 220:51–58

    Article  PubMed  CAS  Google Scholar 

  • Medberry SL, Olszewski NE (1993) Identification of cis elements involved in Commelina yellow mottle virus promoter activity. Plant J 3:619–626

    Article  PubMed  CAS  Google Scholar 

  • Nakazono M, Qiu F, Borsuk LA, Schnable PS (2003) Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize. Plant Cell 15:583–596. doi:10.1105/tpc.008102

    Article  PubMed  CAS  Google Scholar 

  • Oparka KJ, Turgeon R (1999) Sieve elements and companion cells-traffic control centers of the phloem. Plant Cell 11:739–750

    Article  PubMed  CAS  Google Scholar 

  • Owens RA, Blackburn M, Ding B (2001) Possible involvement of the phloem lectin in long-distance viroid movement. Mol Plant-Microbe Interact 14:905–909

    Article  PubMed  CAS  Google Scholar 

  • Pēna-Cortés H, Sánchez-Serrano JJ, Mertens R, Willmitzer L, Prat S (1989) Abscisic acid is involved in the wound-induced expression of the proteinase inhibitor II gene in potato and tomato. Proc Natl Acad Sci USA 86:9851–9855

    Article  PubMed  Google Scholar 

  • Pēna-Cortés H, Fisahn J, Willmitzer L (1995) Signals involved in wound-induced proteinase inhibitor II gene expression in tomato and potato plants. Proc Natl Acad Sci USA 92:4106–4113

    Article  PubMed  Google Scholar 

  • Pommerrenig B, Barth I, Niedermeier M, Kopp S, Schmid J, Dwyer RA, McNair RJ, Klebl F, Sauer N (2006) Common plantain. A collection of expressed sequence tags from vascular tissue and a simple and efficient transformation method. Plant Physiol 142:1427–1441. doi:10.1104/pp.106.089169

    Article  PubMed  CAS  Google Scholar 

  • Roach MJ, Deyholos MK (2007) Microarray analysis of flax (Linum usitatissimum L.) stems identifies transcripts enriched in fibre-bearing phloem tissues. Mol Genet Genomics 278:149–165. doi:10.1007/s00438-007-0241-1

    Article  PubMed  CAS  Google Scholar 

  • Schneidereit A, Imlau A, Sauer N (2008) Conserved cis-regulatory elements for DNA-binding-with-one-finger and homeo-domain-leucine-zipper transcription factors regulate companion cell-specific expression of the Arabidopsis thaliana SUCROSE TRANSPORTER 2 gene. Planta 228:651–662. doi:10.1007/s00425-008-0767-4

    Article  PubMed  CAS  Google Scholar 

  • Sjölund RD (1997) The phloem sieve element: a river runs through it. Plant Cell 9:1137–1146

    Article  PubMed  Google Scholar 

  • Stadler R, Wright KM, Lauterbach C, Amon G, Gahrtz M, Feuerstein A, Oparka KJ, Sauer N (2005) Expression of GFP-fusions in Arabidopsis companion cells reveals non-specific protein trafficking into sieve elements and identifies a novel post-phloem domain in roots. Plant J 41:319–331. doi:10.1111/j.1365-313X.2004.02298.x

    Article  PubMed  CAS  Google Scholar 

  • Stenzel I, Hause B, Maucher H, Pitzschke A, Miersch O, Ziegler J, Ryan CA, Wasternack C (2003) Allene oxide cyclase dependence of the wound response and vascular bundle-specific generation of jasmonates in tomato—amplification in wound signalling. Plant J 33:577–589. doi:10.1046/j.1365-313X.2003.01647.x

    Article  PubMed  CAS  Google Scholar 

  • Titarenko E, Rojo E, León J, Sánchez-Serrano JJ (1997) Jasmonic acid-dependent and -independent signaling pathways control wound-induced gene activation in Arabidopsis thaliana. Plant Physiol 115:817–826

    Article  PubMed  CAS  Google Scholar 

  • Tsuwamoto R, Harada T (2010) Identification of a cis-regulatory element that acts in companion cell-specific expression of AtMT2B promoter through the use of Brassica vasculature and gene-gun-mediated transient assay. Plant Cell Physiol 51:80–90. doi:10.1093/pcp/pcp169

    Article  PubMed  CAS  Google Scholar 

  • Tsuwamoto R, Fukuoka H, Takahata Y (2007) Identification and characterization of genes expressed in early embryogenesis from microspores of Brassica napus. Planta 224:641–652. doi:10.1007/s00425-006-0388-8

    Article  Google Scholar 

  • Tsuwamoto R, Fukuoka H, Takahata Y (2008) GASSHO1 and GASSHO2 encoding a putative leucine-rich repeat transmembrane-type receptor kinase are essential for normal development of the epidermal surface in Arabidopsis embryos. Plant J 54:30–42. doi:10.1111/j.1365-313X.2007.03395.x

    Article  PubMed  CAS  Google Scholar 

  • Vilaine F, Palauqui JC, Amselem J, Kusiak C, Lemoine R, Dinant S (2003) Towards deciphering phloem: a transcriptome analysis of the phloem of Apium graveolens. Plant J 36:67–81. doi:10.1046/j.1365-313X.2003.01855.x

    Article  PubMed  CAS  Google Scholar 

  • Voitsekhovskaja OV, Rudashevskaya EL, Demchenko KN, Pakhomova MV, Batashev DR, Gamalei YV, Lohaus G, Pawlowski K (2009) Evidence for functional heterogeneity of sieve element-companion cell complexes in minor vein phloem of Alonsoa meridionalis. J Exp Bot 60:1873–1883. doi:10.1093/jxb/erp074

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Purugganan MM, Polisensky DH, Antosiewicz DM, Fry SC, Braam J (1995) Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell 7:1555–1567

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Yoshihito Takahata, Marie Sakai, and Yu Takahashi (Iwate University, Japan) for providing Brassica materials. This work was supported by the Program for Promotion of Basic Activities for Innovative Bioscience (PROBRAIN) in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeo Harada.

Additional information

Communicated by F. Sato.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuwamoto, R., Harada, T. The Arabidopsis CORI3 promoter contains two cis-acting regulatory regions required for transcriptional activity in companion cells. Plant Cell Rep 30, 1723–1733 (2011). https://doi.org/10.1007/s00299-011-1080-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1080-4

Keywords

Navigation