Skip to main content
Log in

Rapid and reproducible Agrobacterium-mediated transformation of sorghum

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

A rapid and reproducible Agrobacterium-mediated transformation protocol for sorghum has been developed. The protocol uses the nptII selectable marker gene with either of the aminoglycosides geneticin or paromomycin. A screen of various A. tumefaciens strains revealed that a novel C58 nopaline chromosomal background carrying the chrysanthopine disarmed Ti plasmid pTiKPSF2, designated NTL4/Chry5, was most efficient for gene transfer to sorghum immature embryos. A NTL4/Chry5 transconjugant harboring the pPTN290 binary plasmid, which carries nptII and GUSPlus TM expression cassettes, was used in a series of stable transformation experiments with Tx430 and C2-97 sorghum genotypes and approximately 80% of these transformation experiments resulted in the recovery of at least one transgenic event. The transformation frequencies among the successful experiments ranged from 0.3 to 4.5%, with the average transformation frequency being approximately 1% for both genotypes. Over 97% of the transgenic events were successfully established in the greenhouse and were fully fertile. Co-expression of GUSPlus TM occurred in 89% of the transgenic T0 events. Seed set for the primary transgenic plants ranged from 145 to 1400 seed/plant. Analysis of T1 progeny demonstrated transmission of the transgenes in a simple Mendelian fashion in the majority of events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Able JA, Rathus C, Godwin ID (2001) The investigation of optimal bombardment parameters for transient and stable transgene expression in sorghum. In Vitro Cell Dev Biol 37:341

    Article  CAS  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:211

    Google Scholar 

  • Bedell JA, Budiman MA, Nunberg A, Citek RW, Robbins D, Jones J, Flick E, Rholfing T, Fries J, Bradford K, McMenamy J, Smith M, Holeman H, Roe BA, Wiley G, Korf IF, Rabinowicz PD, Lakey N, McCombie WR, Jeddeloh JA, Martienssen RA (2005) Sorghum genome sequencing by methylation filtration. PLoS Biol 3:e13

    Article  PubMed  Google Scholar 

  • Bush A, Pueppke SG (1991) Characterization of an unusual new strain of Agrobacterium tumefaciens from Chrysanthemum morifolium Ram. Environ Microbiol 57:2468

    CAS  Google Scholar 

  • Carrington JC, Freed DD (1990) Cap-independent enhancement of translation by a plant potyvirus 5′ nontranslated region. J Virol 64:1590

    PubMed  CAS  Google Scholar 

  • Casas AM, Kononowicz AK, Zehr UB, Tomes DT, Axtell JD, Butler LG, Bressan RA, Hasegawa PM (1993) Transgenic sorghum plants via microprojectile bombardment. Proc Natl Acad Sci USA 90:11212

    Article  PubMed  CAS  Google Scholar 

  • Chilton M-D, Currier TC, Farrand SK, Bendich AJ, Gordon MP, Nester EW (1974) Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. Proc Natl Acad Sci USA 71:3672

    Article  PubMed  CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: Version II. Plant Mol Biol Rep 1:19

    Article  CAS  Google Scholar 

  • Elkonin LA, Pakhomova NV (2000) Influence of nitrogen and phosphorus on induction embryogenic callus of sorghum. Plant Cell Tissue Organ Cult 61:115

    Article  Google Scholar 

  • Gao Z, Jayaraj J, Muthukrishnan S, Claflin L, Liang GH (2005) Efficient genetic transformation of Sorghum using a visual screening marker. Genome 48:321

    PubMed  CAS  Google Scholar 

  • Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271

    Article  PubMed  CAS  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort R (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179

    Article  CAS  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208

    Article  CAS  Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton M-D (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168:1291

    PubMed  CAS  Google Scholar 

  • Howe AR, Feng PCC (2003) Assay for the detection of selectable marker expression in plants. In. Monsanto Company (St. Louis, MO), United States Patent Number 511,826. July 29, 2003

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol Biol Rep 5:387

    Article  CAS  Google Scholar 

  • Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383

    Article  CAS  Google Scholar 

  • Kovacs LG, Pueppke SG (1993) The chromosomal background of Agrobacterium tumefaciens Chry5 conditions high virulence on soybean. Mol Plant Microbe Interact 6:601

    CAS  Google Scholar 

  • Luo Z-Q, Clemente T, Farrand SK (2001) Construction of a derivative of Agrobacterium tumefaciens C58 that does not mutate to tetracycline resistance. Mol Plant Microbe Interact 14:98

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473

    Article  CAS  Google Scholar 

  • Palanichelvam K, Oger P, Clough SJ, Cha C, Bent AF, Farrand SK (2000) A second T-region of the soybean-supervirulent chrysopine-type Ti plasmid pTiChry5, and construction of a fully disarmed vir helper plasmid. Mol Plant Microbe Interact 13:1081

    Article  PubMed  CAS  Google Scholar 

  • Park SH, Lee BM, Salas MG, Srivatanakul M, Smith RH (2000) Shorter T-DNA or additional virulence genes improve Agrobacterium-mediated transformation. Theor Appl Genet 101:1015

    Article  CAS  Google Scholar 

  • Sato S, Clemente T, Dweikat I (2004) Identification of an elite sorghum genotype with high in vitro performance capacity. In Vitro Cell Dev Biol 40:57

    Article  Google Scholar 

  • Tadesse Y, Sági L, Swennen R, Jacobs M (2003) Optimisation of transformation conditions and production of transgenic sorghum (Sorghum bicolor) via microprojectile bombardment. Plant Cell Tissue Organ Cult 75:1

    Article  CAS  Google Scholar 

  • Thompson CJ, Movva NR, Tizard R, Crameri R, Davies JE, Lauwereys M, Botterman J (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J 6:2519

    PubMed  CAS  Google Scholar 

  • Zhao ZY, Cai T, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J, Pierce D (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44:789

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Stephen Farrand for A. tumefaciens strains. This work was support by the Nebraska Research Initiative, University of Nebraska's Agricultural Research Division, Nebraska Grain Sorghum Board, University of Nebraska's Plant Science Initiative, and the University of Nebraska's Center for Biotechnology. This is journal series paper number 14586 from the Nebraska Agriculture Research Division.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Clemente.

Additional information

Communicated by P.Ozias-Akins

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howe, A., Sato, S., Dweikat, I. et al. Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep 25, 784–791 (2006). https://doi.org/10.1007/s00299-005-0081-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-005-0081-6

Keywords

Navigation