Skip to main content
Log in

Green fluorescent protein as a visual selection marker for papaya (Carica papaya L.) transformation

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Chemical-based selection for plant transformation is associated with a number of real and perceived problems that might be avoided through visual selection. We have used green fluorescent protein (GFP), as a visual selectable marker to produce transformed papaya (Carica papaya) plants following microprojectile bombardment of embryogenic callus. GFP selection reduced the selection time from 3 months on a geneticin (G418) antibiotic-containing medium to 3–4 weeks. Moreover, GFP selection increased the number of transformed papaya plants by five-to eightfold compared to selection in the presence of antibiotics. Overall, the use of GFP for selecting transgenic papaya lines improved our throughput for transformation by 15- to 24-fold while avoiding the drawbacks associated with the use of antibiotic resistance-based selection markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–h
Fig. 3a–e
Fig. 4
Fig. 5a, b

Similar content being viewed by others

Abbreviations

BA::

Benzyladenine

2, 4-D::

2,4-Dichlorophenoxyacetic acid

GFP::

Green fluorescent protein

IBA::

Indole-3-butyric acid

NAA::

α-Naphthaleneacetic acid

MS::

Murashige and Skoog plant culture medium

References

  • Ahlandsberg S, Satish P, Sun C, Jansson C (1999) Green fluorescent protein as a reporter system in the transformation of barley cultivars. Physiol Plant 107:194–200

    CAS  Google Scholar 

  • Baulcombe DC, Chapman S, Santa Cruz S (1995) Jellyfish green fluorescent protein as a reporter for virus infections. Plant J 7:1045–1053

    CAS  PubMed  Google Scholar 

  • Bevan MW, Flavell RB, Chilton MD (1983) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304:184–187

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Parsher PC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    CAS  PubMed  Google Scholar 

  • Cheng YH, Yang JS, Yeh SD (1996) Efficient transformation of papaya by coat protein gene of papaya ringspot virus mediated by Agrobacterium following liquid-phase wounding of embryogenic tissues with carborundum. Plant Cell Rep 16:127–132

    Google Scholar 

  • Chiu W, Niwa Y, Zheng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 3:325–330

    Google Scholar 

  • Comai L, Facciotti D, Hiatt WR, Thompson G, Rose RE, Stalker DM (1985) Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature 317:741–744

    CAS  Google Scholar 

  • Crawley MJ, Brown SL, Hails RS, Kohn DD, Rees M (2001) Transgenic crops in natural habitats. Nature 409:682–683

    Article  CAS  PubMed  Google Scholar 

  • De Block M, Botterman J, Vanderwiele M, Dockx J, Thoen C, Gossele V, Rao Movva N, Thompson C, Van Montagu M, Leemans J (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6:2513–2518

    CAS  Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E, Endo S, Yamada K, Komanine A (2001) Systems for the removal of a selection marker and their combination with a positive marker. Plant Cell Rep 20:383–392

    Article  CAS  Google Scholar 

  • Elliott AR, Campbell JA, Dugdale B, Brettell RIS, Grof CPL (1999) Green-fluorescent protein facilitates rapid in vivo detection of genetically transformed plant cells. Plant Cell Rep 18:707–714

    CAS  Google Scholar 

  • Fitch MMM (1993) High frequency somatic embryogenesis and plant regeneration from papaya hypocotyl callus. Plant Cell Tissue Organ Cult 32:205–212

    CAS  Google Scholar 

  • Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL, Sanford JC (1990) Stable transformation of papaya via microprojectile bombardment. Plant Cell Rep 9:189–194

    CAS  Google Scholar 

  • Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL (1993) Transgenic papaya plants from Agrobacterium-mediated transformation of somatic embryos. Plant Cell Rep 12:245–249

    CAS  Google Scholar 

  • Fitch MMM, Pang S-Z, Slightom JL, Lius S, Tennant P, Manshardt RM, Gonsalves D (1994) Genetic transformation in Carica papaya L. (Papaya). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 29. Springer, Berlin Heidelberg New York, pp 236–256

  • Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffmann NL, Woo SC (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80:4803–4807

    CAS  PubMed  Google Scholar 

  • Harper BK, Mabon SA, Leffel SM, Halfhill MD, Richards HA, Moyer KA, Stewart CN Jr (1999) Green fluorescent protein as a marker for expression of a second gene in transgenic plants. Nat Biotechnol 17:1125–1129

    Article  CAS  PubMed  Google Scholar 

  • Haseloff J, Amos B (1995) GFP in plants. Trends Genet 11:328–329

    CAS  PubMed  Google Scholar 

  • Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 94:2122–2127

    CAS  PubMed  Google Scholar 

  • Haughn GW, Smith J, Mazur B, Somerville C (1988) Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol Gen Genet 211:266–271

    CAS  Google Scholar 

  • Heim R, Prasher DC, Tsien RY (1994) Wavelength mutations and posttranslational auto-oxidation of green fluorescent protein. Proc Natl Acad Sci USA 91:12501–12504

    CAS  PubMed  Google Scholar 

  • Herrera-Estrella L, De Block M, Messens E, Hernalsteens JP, Van Montagu M, Schell J (1993) Chimeric genes as dominant selectable markers in plant cells EMBO J 2:987–995

    Google Scholar 

  • Jefferson R (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    CAS  Google Scholar 

  • Joersbo M, Donaldson I, Kreiber J, Petersen SG, Brunstedt J, Okkels FT (1998) Analysis of mannose selection used for transformation of sugar beet. Mol Breed 4:111–117

    Article  CAS  Google Scholar 

  • Kaeppler, HF, Menon GK, Skadsen RW, Nuutila AM, Carlson AR (2000) Transgenic oat plants via visual selection of cells expressing green fluorescent protein. Plant Cell Rep 19:661–666

    CAS  Google Scholar 

  • Kaeppler HF, Carlson AR, Menon GK (2001) Routine utilization of green fluorescent protein as a visual selectable marker for cereal transformation. In Vitro Cell Dev Biol-Plant 37:120–126

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Ow DW, Wood KV, de Luca M, deWet JR, Helinski DR, Howell SH (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234:856–859

    CAS  Google Scholar 

  • Plautz JD, Day RN, Dailey GM, Welsh SB, Hall JC, Halpain S, Kay SA (1996) Green fluorescent protein and its derivates as versatile maker for gene expression in living Drosophila melanogaster, plant, and mammalian cells. Gene 173:83–87

    Article  CAS  PubMed  Google Scholar 

  • Richards HA, Han CT, Hopkins RG, Failla ML, Ward WW, Stewart CN Jr (2003) Safety assessment of recombinant green fluorescent protein orally administered to weaned rats. Am Soc Nutr Sci J Nutr 133:1909–1912

    CAS  Google Scholar 

  • Rogers SO, Bendlich AL (1994) Extraction of total cellular DNA from plants, algae and fungi. In: Gelvin SB, Schilperoort AR (eds) Plant molecular biology manual, 2nd edn. Kluwer, Dordrecht, pp 1–8

  • Sacchetti A, Alberti S (1999) Protein tags enhance GFP folding in eukaryotic cells. Nat Biotechnol 17:1046

    Article  CAS  Google Scholar 

  • Sacchetti A, Ciccocioppo R, Alberti S (2000) The molecular determinants of the efficiency of green fluorescent protein mutants. Histopathology 15:101–107

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn, vol 1–3. Cold Spring Harbor Press, Cold Spring Harbor

    Google Scholar 

  • Siemering KR, Golbik R, Sever R, Haseloff J (1996) Mutations that suppress the thermosensitivity of green fluorescent protein. Curr Biol 6:1653–1663

    CAS  PubMed  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Bol 98:503–517

    CAS  Google Scholar 

  • Stewart CN Jr (2001) The utility of green fluorescent protein in transgenic plants. Plant Cell Rep 20:376–382

    CAS  Google Scholar 

  • Todd R, Tague BW (2001) Phosphomannose isomerase: a versatile selectable marker for Arabidopsis thaliana germ-line transformation. Plant Mol Biol Rep 19:307–319

    CAS  Google Scholar 

  • Vain P, Worland B, Kohli A, Snape J, Christou P (2000) The green fluorescent protein (GFP) as a vital screenable marker in rice transformation. Theor Appl Genet 96:164–169

    Article  Google Scholar 

  • Van Den Elzen PJM, Townsend J, Lee KY, Bedbrook JR (1985) A chimaeric hygromycin resistance gene as a selectable marker in plant cells. Plant Mol Biol 5:299–302

    Google Scholar 

  • Wright M, Dawson J, Dunder E, Suttie J, Reed J, Dramer C, Chang Y, Novitzky R, Wang H, Artim-Moore L (2001) Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep 20:429–436

    Google Scholar 

Download references

Acknowledgements

This research was supported in part by a US Department of Agriculture ARS cooperative agreement No. CA58-5320-3-460 with the Hawaii Agriculture Research Center. The authors would like to thank Dr. Mingli Wang, HARC, for providing the pML202 construct, CAMBIA, Canberra, Australia, for providing the pCAMBIA1303 construct, and Dr. Henrik Albert, USDA, ARS, for thoughtful discussions and for technical assistance with the fluorescence microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. J. Zhu.

Additional information

Communicated by R.J. Rose

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y.J., Agbayani, R. & Moore, P.H. Green fluorescent protein as a visual selection marker for papaya (Carica papaya L.) transformation. Plant Cell Rep 22, 660–667 (2004). https://doi.org/10.1007/s00299-004-0755-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-004-0755-5

Keywords

Navigation