Skip to main content

Advertisement

Log in

Treatment of rheumatoid arthritis with conventional, targeted and biological disease-modifying antirheumatic drugs in the setting of liver injury and non-alcoholic fatty liver disease

  • Review
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Increased incidence of liver diseases emphasizes greater caution in prescribing antirheumatic drugs due to their hepatotoxicity. A transient elevation of transaminases to autoimmune hepatitis and acute liver failure has been described. For every 10 cases of alanine aminotransferase (ALT) elevation in a clinical trial, it is estimated that one case of more severe liver injury will develop once the investigated drug is widely available. Biologic disease-modifying antirheumatic drugs (bDMARDs) and targeted synthetic (tsDMARDs) are less likely to cause liver damage. However, various manifestations, from a transient elevation of transaminases to autoimmune hepatitis and acute liver failure, have been described. Research on non-alcoholic fatty liver disease (NAFLD) has provided insight into a pre-existing liver disease that may be worsen by medication. Diabetes and obesity could be an additional burden in drug-induced liver injury (DILI). In the intertwining of the inflammatory and metabolic pathways, the most important cytokines are IL-6 and TNF alpha, which are also the cornerstone of biological treatment for rheumatoid arthritis. This narrative review evaluates the complexity and prevention of DILI in RA and treatment options involving biological therapy and tsDMARDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Leise MD, Poterucha JJ, Talwalkar JA (2014) Drug-induced liver injury. Mayo Clin Proc 89:95–106. https://doi.org/10.1016/j.mayocp.2013.09.016

    Article  CAS  PubMed  Google Scholar 

  2. Chalasani NP, Hayashi PH, Bonkovsky HL et al (2014) ACG clinical guideline: the diagnosis and management of idiosyncratic drug-induced liver injury. Am J Gastroenterol 109:950–966. https://doi.org/10.1038/ajg.2014.131

    Article  PubMed  Google Scholar 

  3. Andrade RJ, Aithal GP, Björnsson ES et al (2019) EASL clinical practice guidelines: drug-induced liver injury. J Hepatol 70:1222–1261. https://doi.org/10.1016/j.jhep.2019.02.014

    Article  Google Scholar 

  4. Aithal GP (2011) Hepatotoxicity related to antirheumatic drugs. Nat Rev Rheumatol 7:139–150. https://doi.org/10.1038/nrrheum.2010.214

    Article  CAS  PubMed  Google Scholar 

  5. Radovanović-Dinić B, Tešić-Rajković S, Zivkovic V, Grgov S (2018) Clinical connection between rheumatoid arthritis and liver damage. Rheumatol Int 38:715–724

    Article  Google Scholar 

  6. Licata A (2016) Adverse drug reactions and organ damage: the liver. Eur J Intern Med 28:9–16. https://doi.org/10.1016/j.ejim.2015.12.017

    Article  CAS  PubMed  Google Scholar 

  7. Metushi I, Uetrecht J, Phillips E (2016) Mechanism of isoniazid-induced hepatotoxicity: then and now. Br J Clin Pharmacol 81:1030–1036. https://doi.org/10.1111/bcp.12885

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cataldi M, Citro V, Resnati C et al (2021) New avenues for treatment and prevention of drug-induced steatosis and steatohepatitis: much more than antioxidants. Adv Ther 38:2094–2113. https://doi.org/10.1007/s12325-021-01669-y

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ezhilarasan D (2021) Hepatotoxic potentials of methotrexate: understanding the possible toxicological molecular mechanisms. Toxicology 458:152840. https://doi.org/10.1016/j.tox.2021.152840

    Article  CAS  PubMed  Google Scholar 

  10. Veeravalli V, Dash RP, Thomas JA et al (2020) Critical assessment of pharmacokinetic drug-drug interaction potential of tofacitinib, baricitinib and upadacitinib, the three approved janus kinase inhibitors for rheumatoid arthritis treatment. Drug Saf 43:711–725

    Article  CAS  Google Scholar 

  11. Qiao X, Zhou Z-C, Niu R et al (2019) Hydroxychloroquine improves obesity-associated insulin resistance and hepatic steatosis by regulating lipid metabolism. Front Pharmacol 10:855. https://doi.org/10.3389/fphar.2019.00855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fraenkel L, Bathon JM, England BR et al (2021) 2021 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Rheumatol 73:1108–1123. https://doi.org/10.1002/art.41752

    Article  PubMed  Google Scholar 

  13. Gasparyan AY, Ayvazyan L, Blackmore H, Kitas GD (2011) Writing a narrative biomedical review: considerations for authors, peer reviewers, and editors. Rheumatol Int 31:1409–1417. https://doi.org/10.1007/s00296-011-1999-3

    Article  PubMed  Google Scholar 

  14. Satapathy SK, Kuwajima V, Nadelson J et al (2015) Drug-induced fatty liver disease: an overview of pathogenesis and management. Ann Hepatol 14:789–806. https://doi.org/10.5604/16652681.1171749

    Article  CAS  PubMed  Google Scholar 

  15. Zhang X, Ouyang J, Thung SN (2013) Histopathologic manifestations of drug-induced hepatotoxicity. Clin Liver Dis 17:547–564. https://doi.org/10.1016/j.cld.2013.07.004

    Article  PubMed  Google Scholar 

  16. Ramachandran R, Kakar S (2009) Histological patterns in drug-induced liver disease. J Clin Pathol 62:481–492. https://doi.org/10.1136/jcp.2008.058248

    Article  CAS  PubMed  Google Scholar 

  17. Mori S, Arima N, Ito M et al (2018) Non-alcoholic steatohepatitis-like pattern in liver biopsy of rheumatoid arthritis patients with persistent transaminitis during low-dose methotrexate treatment. PLoS ONE 13:e0203084. https://doi.org/10.1371/journal.pone.0203084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yoneda M, Imajo K, Eguchi Y et al (2013) Noninvasive scoring systems in patients with nonalcoholic fatty liver disease with normal alanine aminotransferase levels. J Gastroenterol 48:1051–1060. https://doi.org/10.1007/s00535-012-0704-y

    Article  CAS  PubMed  Google Scholar 

  19. García DS, Saturansky EI, Poncino D et al (2019) Hepatic toxicity by methotrexate with weekly single doses associated with folic acid in rheumatoid and psoriatic arthritis. What is its real frequency? Ann Hepatol 18:765–769

    Article  Google Scholar 

  20. Bafna P, Sahoo RR, Hazarika K et al (2021) Prevalence of liver fibrosis by fibroscan in patients on long-term methotrexate therapy for rheumatoid arthritis. Clin Rheumatol 40:3605–3613. https://doi.org/10.1007/s10067-021-05678-8

    Article  PubMed  Google Scholar 

  21. Brunt EM (2001) Nonalcoholic steatohepatitis: definition and pathology. Semin Liver Dis 21:003–016

    Article  CAS  Google Scholar 

  22. Kleiner DE, Brunt EM, Van Natta M et al (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313–1321

    Article  Google Scholar 

  23. Singh S, Allen AM, Wang Z et al (2015) Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. Clin Gastroenterol Hepatol 13:643-654.e9. https://doi.org/10.1016/j.cgh.2014.04.014

    Article  PubMed  Google Scholar 

  24. Doria A, Zavaglia D (2019) Monotherapy is a relevant option in rheumatoid arthritis treatment: a literature review. Clin Exp Rheumatol 37:862–871

    PubMed  Google Scholar 

  25. Lertnawapan R, Chonprasertsuk S, Siramolpiwat S (2019) Association between cumulative methotrexate dose, non-invasive scoring system and hepatic fibrosis detected by fibroscan in rheumatoid arthritis patients receiving methotrexate. Int J Rheum Dis 22:214–221. https://doi.org/10.1111/1756-185X.13442

    Article  CAS  PubMed  Google Scholar 

  26. Mori S, Arima N, Ito M et al (2020) Incidence, predictive factors and severity of methotrexate-related liver injury in rheumatoid arthritis: a longitudinal cohort study. Rheumatol Adv Practi. https://doi.org/10.1093/rap/rkaa020

    Article  Google Scholar 

  27. Chakravarthy MV, Neuschwander-Tetri BA (2020) The metabolic basis of non-alcoholic steatohepatitis. Pediatr Endocrinol Diabetes Metab. https://doi.org/10.1002/edm2.112

    Article  Google Scholar 

  28. Mansouri A, Gattolliat C-H, Asselah T (2018) Mitochondrial dysfunction and signaling in chronic liver diseases. Gastroenterology 155:629–647. https://doi.org/10.1053/j.gastro.2018.06.083

    Article  CAS  PubMed  Google Scholar 

  29. Riordan JD, Nadeau JH (2014) Modeling progressive non-alcoholic fatty liver disease in the laboratory mouse. Mamm Genome 25:473–486. https://doi.org/10.1007/s00335-014-9521-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pickett-Blakely O, Young K, Carr RM (2018) Micronutrients in nonalcoholic fatty liver disease pathogenesis. Cell Mol Gastroenterol Hepatol 6:451–462

    Article  Google Scholar 

  31. Labadie JG, Jain M (2019) Noninvasive tests to monitor methotrexate-induced liver injury. Clin Liver Dis 13:67–71. https://doi.org/10.1002/cld.765

    Article  Google Scholar 

  32. Berzigotti A, Tsochatzis E, Boursier J et al (2021) EASL clinical practice guidelines on non-invasive tests for evaluation of liver disease severity and prognosis—2021 update. J Hepatol 75:659–689. https://doi.org/10.1016/j.jhep.2021.05.025

    Article  Google Scholar 

  33. Emery P, Breedveld FC, Lemmel EM et al (2000) A comparison of the efficacy and safety of leflunomide and methotrexate for the treatment of rheumatoid arthritis. Rheumatology 39:655–665. https://doi.org/10.1093/rheumatology/39.6.655

    Article  CAS  PubMed  Google Scholar 

  34. Curtis JR, Beukelman T, Onofrei A et al (2010) Elevated liver enzyme tests among patients with rheumatoid arthritis or psoriatic arthritis treated with methotrexate and/or leflunomide. Ann Rheum Dis 69:43–47. https://doi.org/10.1136/ard.2008.101378

    Article  CAS  PubMed  Google Scholar 

  35. Rouhi A, Hazlewood G, Shaheen A-A et al (2017) Prevalence and risk factors for liver fibrosis detected by transient elastography or shear wave elastography in inflammatory arthritis: a systematic review. Clin Exp Rheumatol 35:1029–1036

    PubMed  Google Scholar 

  36. Xuan J, Ren Z, Qing T et al (2018) Mitochondrial dysfunction induced by leflunomide and its active metabolite. Toxicology 396–397:33–45. https://doi.org/10.1016/j.tox.2018.02.003

    Article  CAS  PubMed  Google Scholar 

  37. Bird P, Griffiths H, Tymms K et al (2013) The smile study—safety of methotrexate in combination with leflunomide in rheumatoid arthritis. J Rheumatol 40:228–235. https://doi.org/10.3899/jrheum.120922

    Article  CAS  PubMed  Google Scholar 

  38. Suissa S, Ernst P, Hudson M et al (2004) Newer disease-modifying antirheumatic drugs and the risk of serious hepatic adverse events in patients with rheumatoid arthritis. Am J Med 117:87–92. https://doi.org/10.1016/j.amjmed.2004.02.032

    Article  CAS  PubMed  Google Scholar 

  39. French JB, Bonacini M, Ghabril M et al (2016) Hepatotoxicity associated with the use of anti-TNF-α agents. Drug Saf 39:199–208. https://doi.org/10.1007/s40264-015-0366-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sokolove J, Strand V, Greenberg JD et al (2010) Risk of elevated liver enzymes associated with TNF inhibitor utilisation in patients with rheumatoid arthritis. Ann Rheum Dis 69:1612–1617. https://doi.org/10.1136/ard.2009.112136

    Article  CAS  PubMed  Google Scholar 

  41. Bandt MD (2019) Anti-TNF-alpha-induced lupus. Arthritis Res Ther 21:235

    Article  Google Scholar 

  42. Lopetuso L, Mocci G, Marzo M et al (2018) Harmful effects and potential benefits of anti-tumor necrosis factor (TNF)-α on the liver. Int J Mol Sci 19:2199. https://doi.org/10.3390/ijms19082199

    Article  CAS  PubMed Central  Google Scholar 

  43. Shah P, Sundaram V, Björnsson E (2020) Biologic and checkpoint inhibitor-induced liver injury: a systematic literature review. Hepatol Commun 4:172–184. https://doi.org/10.1002/hep4.1465

    Article  PubMed  PubMed Central  Google Scholar 

  44. Björnsson ES, Gunnarsson BI, Gröndal G et al (2015) Risk of drug-induced liver injury from tumor necrosis factor antagonists. Clin Gastroenterol Hepatol 13:602–608

    Article  Google Scholar 

  45. Wandrer F, Liebig S, Marhenke S et al (2020) TNF-receptor-one inhibition reduces liver steatosis, hepatocellular injury and fibrosis in NAFLD mice. Cell Death Dis 11:212. https://doi.org/10.1038/s41419-020-2411-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sethi JK, Hotamisligil GS (2021) Metabolic messengers: tumour necrosis factor. Nat Metab 3:1302–1312. https://doi.org/10.1038/s42255-021-00470-z

    Article  CAS  PubMed  Google Scholar 

  47. LiverTox: Clinical and research information on drug-induced liver injury. National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD (2017). https://www.ncbi.nlm.nih.gov/books/NBK548243

  48. Ogata A, Kato Y, Higa S, Yoshizaki K (2019) IL-6 inhibitor for the treatment of rheumatoid arthritis: a comprehensive review. Mod Rheumatol 29:258–267. https://doi.org/10.1080/14397595.2018.1546357

    Article  CAS  PubMed  Google Scholar 

  49. Burmester GR, Rubbert-Roth A, Cantagrel A et al (2014) A randomised, double-blind, parallel-group study of the safety and efficacy of subcutaneous tocilizumab versus intravenous tocilizumab in combination with traditional disease-modifying antirheumatic drugs in patients with moderate to severe rheumatoid arthritis (SUMMACTA study). Ann Rheum Dis 73:69–74. https://doi.org/10.1136/annrheumdis-2013-203523

    Article  CAS  PubMed  Google Scholar 

  50. Genovese MC, Kremer JM, van Vollenhoven RF et al (2017) Transaminase levels and hepatic events during tocilizumab treatment: pooled analysis of long-term clinical trial safety data in rheumatoid arthritis. Arthritis Rheumatol 69:1751–1761. https://doi.org/10.1002/art.40176

    Article  CAS  PubMed  Google Scholar 

  51. Burmester GR, Lin Y, Patel R et al (2017) Efficacy and safety of sarilumab monotherapy versus adalimumab monotherapy for the treatment of patients with active rheumatoid arthritis (MONARCH): a randomised, double-blind, parallel-group phase III trial. Ann Rheum Dis 76:840–847. https://doi.org/10.1136/annrheumdis-2016-210310

    Article  CAS  PubMed  Google Scholar 

  52. Schmidt-Arras D, Rose-John S (2016) IL-6 pathway in the liver: from physiopathology to therapy. J Hepatol 64:1403–1415

    Article  CAS  Google Scholar 

  53. Xia M-F, Bian H, Gao X (2019) NAFLD and diabetes two sides of the same coin? Rationale for gene-based personalized NAFLD treatment. Front Pharmacol. https://doi.org/10.3389/fphar.2019.00877

    Article  PubMed  PubMed Central  Google Scholar 

  54. Patsalos O, Dalton B, Himmerich H (2020) Effects of IL-6 signaling pathway inhibition on weight and BMI: a systematic review and meta-analysis. Int J Mol Sci 21:6290. https://doi.org/10.3390/ijms21176290

    Article  CAS  PubMed Central  Google Scholar 

  55. Docherty S, Harley R, McAuley JJ et al (2022) The effect of exercise on cytokines: implications for musculoskeletal health: a narrative review. BMC Sports Sci Med Rehabil 14:5. https://doi.org/10.1186/s13102-022-00397-2

    Article  PubMed  PubMed Central  Google Scholar 

  56. Taylor PC, Keystone EC, van der Heijde D et al (2017) Baricitinib versus placebo or adalimumab in rheumatoid arthritis. N Engl J Med 376:652–662. https://doi.org/10.1056/NEJMoa1608345

    Article  CAS  PubMed  Google Scholar 

  57. Keystone EC, Genovese MC, Schlichting DE et al (2018) Safety and efficacy of baricitinib through 128 weeks in an open-label, longterm extension study in patients with rheumatoid arthritis. J Rheumatol 45:14–21. https://doi.org/10.3899/jrheum.161161

    Article  CAS  PubMed  Google Scholar 

  58. van Vollenhoven RF, Fleischmann R, Cohen S et al (2012) Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N Engl J Med 367:508–519

    Article  Google Scholar 

  59. Fleischmann R, Kremer J, Cush J et al (2012) Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N Engl J Med 367:495–507. https://doi.org/10.1056/NEJMoa1109071

    Article  CAS  PubMed  Google Scholar 

  60. Mueller RB, Hasler C, Popp F et al (2019) Effectiveness tolerability, and safety of tofacitinib in rheumatoid arthritis: a retrospective analysis of real-world data from the St. Gallen and Aarau cohorts. J Clin Med Res 8(10):1548

    CAS  Google Scholar 

  61. Caporali R, Zavaglia D (2019) Real-world experience with tofacitinib for the treatment of rheumatoid arthritis. Clin Exp Rheumatol 37:485–495

    PubMed  Google Scholar 

  62. Bertoldi I, Caporali R (2021) Tofacitinib: real-world data and treatment persistence in rheumatoid arthritis. Open Access Rheumatol 13:221–237. https://doi.org/10.2147/OARRR.S322086

    Article  PubMed  PubMed Central  Google Scholar 

  63. Fitton J, Melville AR, Emery P et al (2021) Real-world single centre use of JAK inhibitors across the rheumatoid arthritis pathway. Rheumatology 60:4048–4054. https://doi.org/10.1093/rheumatology/keaa858

    Article  CAS  PubMed  Google Scholar 

  64. Jamilloux Y, Jammal TE, Vuitton L et al (2019) JAK inhibitors for the treatment of autoimmune and inflammatory diseases. Autoimmun Rev 18:102390. https://doi.org/10.1016/j.autrev.2019.102390

    Article  CAS  PubMed  Google Scholar 

  65. Fleischmann R, Takeuchi T, Schiff M et al (2020) Efficacy and safety of long-term baricitinib with and without methotrexate for the treatment of rheumatoid arthritis: experience with baricitinib monotherapy continuation or after switching from methotrexate monotherapy or baricitinib plus methotrexate. Arthritis Care Res 72:1112–1121. https://doi.org/10.1002/acr.24007

    Article  CAS  Google Scholar 

  66. Shao M, Ye Z, Qin Y, Wu T (2020) Abnormal metabolic processes involved in the pathogenesis of non-alcoholic fatty liver disease (review). Exp Ther Med 20:1–1. https://doi.org/10.3892/etm.2020.9154

    Article  CAS  Google Scholar 

  67. Clarke B, Yates M, Adas M et al (2021) The safety of JAK-1 inhibitors. Rheumatol 60(2):24–30

    Article  Google Scholar 

  68. Zhao J, Qi Y-F, Yu Y-R (2021) STAT3: a key regulator in liver fibrosis. Ann Hepatol 21:100224

    Article  CAS  Google Scholar 

  69. Grohmann M, Wiede F, Dodd GT et al (2018) Obesity drives STAT-one-dependent NASH and STAT-three-dependent HCC. Cell 175:1289-1306.e20

    Article  CAS  Google Scholar 

  70. Malemud CJ (2018) The role of the JAK/STAT signal pathway in rheumatoid arthritis. Ther Adv Musculoskelet Dis 10:117–127. https://doi.org/10.1177/1759720X18776224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Trueman S, Mohamed MF, Feng T et al (2019) Characterization of the effect of hepatic impairment on upadacitinib pharmacokinetics. J Clin Pharmacol 59:1188–1194. https://doi.org/10.1002/jcph.1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Keystone EC, Cohen SB, Emery P et al (2012) Multiple courses of rituximab produce sustained clinical and radiographic efficacy and safety in patients with rheumatoid arthritis and an inadequate response to one or more tumor necrosis factor inhibitors: five-year data from the reflex study. J Rheumatol 39:2238–2246. https://doi.org/10.3899/jrheum.120573

    Article  CAS  PubMed  Google Scholar 

  73. van Vollenhoven RF, Emery P, Bingham CO et al (2013) Long-term safety of rituximab in rheumatoid arthritis: 9.5-year follow-up of the global clinical trial programme with a focus on adverse events of interest in RA patients. Ann Rheum Dis 72:1496–1502

    Article  Google Scholar 

  74. LiverTox: Clinical and research information on drug-induced liver injury. National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD (2012). Rituximab. [Updated 2018 Jun 18]. https://www.ncbi.nlm.nih.gov/books/NBK548249/

Download references

Funding

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Contributions

All co-authors (TZ, MSB, and MR) contributed to the design of the work and revised it critically for important intellectual content; approved the final version to be published. All co-authors are fully responsible for the integrity and accuracy of all aspects of the work.

Corresponding author

Correspondence to Tatjana Zekić.

Ethics declarations

Ethical approval

This narrative review is written in compliance with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zekić, T., Benić, M.S. & Radić, M. Treatment of rheumatoid arthritis with conventional, targeted and biological disease-modifying antirheumatic drugs in the setting of liver injury and non-alcoholic fatty liver disease. Rheumatol Int 42, 1665–1679 (2022). https://doi.org/10.1007/s00296-022-05143-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-022-05143-y

Keywords

Navigation