Skip to main content

Advertisement

Log in

DNA repeat sequences: diversity and versatility of functions

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Although discovered decades ago, the molecular identification, the diversity and versatility of functions, and the evolutionary origin of repeat DNA sequences (REPs) containing palindromic units in prokaryotes are now bringing attention to a wide range of biological scientists. A brief account of the current state of the repeat DNA sequences is presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aranda-Olmedo I, Tobes R, Manzanera M, Ramos JL, Marques S (2002) Species-specific repetitive extragenic palindromic (REP) sequences in Pseudomonas putida. Nucl Acids Res 30:1826–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arthanari H, Wojtuszewski K, Mukerji I, Bolton PH (2004) Effects of HU binding on the equilibrium cyclization of mismatched, curved, and normal DNA. Biophys J 86:1625–1631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachellier S, Perrin D, Hofnung M, Gilson E (1993) Bacterial interspersed mosaic elements (BIMEs) are present in the genome of Klebsiella. Mol Microbiol 7:537–544

    Article  CAS  PubMed  Google Scholar 

  • Bachellier S, Saurin W, Perrin D, Hofnung M, Gilson E (1994) Structural and functional diversity among bacterial interspersed mosaic elements (BIMEs). Mol Microbiol 12:61–70

    Article  CAS  PubMed  Google Scholar 

  • Bachellier S, Clement JM, Hofnung M (1999) Short palindromic repetitive DNA elements in enterobacteria: a survey. Res Microbiol 150:627–639

    Article  CAS  PubMed  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    Article  CAS  PubMed  Google Scholar 

  • Boccard F, Prentki P (1993) Specific interaction of IHF with RIBs, a class of bacterial repetitive DNA elements located at the 3′ end of transcription units. EMBO J 12:5019–5027

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bondy-Denomy J, Garcia B, Strum S, Du M, Rollins MF, Hidalgo-Reyes Y, Wiedenheft B, Maxwell KL, Davidson AR (2015) Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins. Nature 526:136–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandler M, de la Cruz F, Dyda F, Hickman AB, Moncalian G, Ton-Hoang B (2013) Breaking and joining single-stranded DNA: the HUH endonuclease superfamily. Nat Rev Microbiol 11:525–538

    Article  CAS  PubMed  Google Scholar 

  • Dimri GP, Rudd KE, Morgan MK, Bayat H, Ames GF (1992) Physical mapping of repetitive extragenic palindromic sequences in Escherichia coli and phylogenetic distribution among Escherichia coli strains and other enteric bacteria. J Bacteriol 174:4583–4593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espeli O, Boccard F (1997) In vivo cleavage of Escherichia coli BIME-2 repeats by DNA gyrase: genetic characterization of the target and identification of the cut site. Mol Microbiol 26:767–777

    Article  CAS  PubMed  Google Scholar 

  • Espeli O, Moulin L, Boccard F (2001) Transcription attenuation associated with bacterial repetitive extragenic BIME elements. J Mol Biol 314:375–386

    Article  CAS  PubMed  Google Scholar 

  • Filee J, Siguier P, Chandler M (2007) Insertion sequence diversity in archaea. Microbiol Mol Biol Rev MMBR 71:121–157

    Article  CAS  PubMed  Google Scholar 

  • Florek MC, Gilbert DP, Plague GR (2014) Insertion sequence distribution bias in Archaea. Mob Genet Elem 4:e27829

    Article  Google Scholar 

  • Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadan AH, Moineau S (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71

    Article  CAS  PubMed  Google Scholar 

  • George B, Bhatt BS, Awasthi M, George B, Singh AK (2015) Comparative analysis of microsatellites in chloroplast genomes of lower and higher plants. Curr Genet 61:665–677

    Article  CAS  PubMed  Google Scholar 

  • Gilson E, Clement JM, Brutlag D, Hofnung M (1984) A family of dispersed repetitive extragenic palindromic DNA sequences in E. coli. EMBO J 3:1417–1421

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilson E, Perrin D, Clement JM, Szmelcman S, Dassa E, Hofnung M (1986) Palindromic units from E. coli as binding sites for a chromoid-associated protein. FEBS Lett 206:323–328

    Article  CAS  PubMed  Google Scholar 

  • Gilson E, Perrin D, Hofnung M (1990) DNA polymerase I and a protein complex bind specifically to E. coli palindromic unit highly repetitive DNA: implications for bacterial chromosome organization. Nucl Acids Res 18:3941–3952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilson E, Saurin W, Perrin D, Bachellier S, Hofnung M (1991a) The BIME family of bacterial highly repetitive sequences. Res Microbiol 142:217–222

    Article  CAS  PubMed  Google Scholar 

  • Gilson E, Saurin W, Perrin D, Bachellier S, Hofnung M (1991b) Palindromic units are part of a new bacterial interspersed mosaic element (BIME). Nucl Acids Res 19:1375–1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammel M, Amlanjyoti D, Reyes FE, Chen JH, Parpana R, Tang HY, Larabell CA, Tainer JA, Adhya S (2016) HU multimerization shift controls nucleoid compaction. Sci Adv 2:e1600650

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanke ML, Kielian T (2011) Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin Sci 121:367–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatfield GW, Benham CJ (2002) DNA topology-mediated control of global gene expression in Escherichia coli. Annu Rev Genet 36:175–203

    Article  CAS  PubMed  Google Scholar 

  • Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408:740–745

    Article  CAS  PubMed  Google Scholar 

  • Hickman AB, Dyda F (2015) Mechanisms of DNA transposition. Microbiology spectrum 3: MDNA3-0034-2014

  • Higgins CF, Ames GF, Barnes WM, Clement JM, Hofnung M (1982) A novel intercistronic regulatory element of prokaryotic operons. Nature 298:760–762

    Article  CAS  PubMed  Google Scholar 

  • Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170

    Article  CAS  PubMed  Google Scholar 

  • Ishihama A (2009) The nucleoid: an overview. EcoSal Plus. doi: 10.1128/ecosalplus.2.6

  • Jorgensen R (1990) Altered gene expression in plants due to trans interactions between homologous genes. Trends Biotechnol 8:340–344

    Article  CAS  PubMed  Google Scholar 

  • Kar S, Edgar R, Adhya S (2005) Nucleoid remodeling by an altered HU protein: reorganization of the transcription program. Proc Natl Acad Sci USA 102:16397–16402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam S, Roth JR (1983) IS200: a Salmonella-specific insertion sequence. Cell 34:951–960

    Article  CAS  PubMed  Google Scholar 

  • Lee R, Feinbaum R, Ambros V (2004) A short history of a short RNA. Cell 116:S89–S92 (1 p following S96)

    Article  CAS  PubMed  Google Scholar 

  • Liu LF, Wang JC (1987) Supercoiling of the DNA template during transcription. Proc Natl Acad Sci USA 84:7024–7027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macvanin M, Adhya S (2012) Architectural organization in E. coli nucleoid. Biochim Biophys Acta 1819:830–835

    Article  CAS  PubMed  Google Scholar 

  • Macvanin M, Edgar R, Cui F, Trostel A, Zhurkin V, Adhya S (2012) Noncoding RNAs binding to the nucleoid protein HU in Escherichia coli. J Bacteriol 194:6046–6055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magnusson M, Tobes R, Sancho J, Pareja E (2007) Cutting edge: natural DNA repetitive extragenic sequences from gram-negative pathogens strongly stimulate TLR9. J Immunol 179:31–35

    Article  CAS  PubMed  Google Scholar 

  • Maxwell A, Gellert M (1986) Mechanistic aspects of DNA topoisomerases. Adv Protein Chem 38:69–107

    Article  CAS  PubMed  Google Scholar 

  • Messing SA, Ton-Hoang B, Hickman AB, McCubbin AJ, Peaslee GF, Ghirlando R, Chandler M, Dyda F (2012) The processing of repetitive extragenic palindromes: the structure of a repetitive extragenic palindrome bound to its associated nuclease. Nucl Acids Res 40:9964–9979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison A, Cozzarelli NR (1979) Site-specific cleavage of DNA by E. coli DNA gyrase. Cell 17:175–184

    Article  CAS  PubMed  Google Scholar 

  • Nunvar J, Huckova T, Licha I (2010) Identification and characterization of repetitive extragenic palindromes (REP)-associated tyrosine transposases: implications for REP evolution and dynamics in bacterial genomes. BMC Genom 11:44

    Article  Google Scholar 

  • Oppenheim AB, Rudd KE, Mendelson I, Teff D (1993) Integration host factor binds to a unique class of complex repetitive extragenic DNA sequences in Escherichia coli. Mol Microbiol 10:113–122

    Article  CAS  PubMed  Google Scholar 

  • Parthiban P, Mahendra J (2015) Toll-like receptors: a key marker for periodontal disease and preterm birth—a contemporary review. J Clin Diagn Res JCDR 9:ZE14–ZE17

    CAS  PubMed  Google Scholar 

  • Postow L, Hardy CD, Arsuaga J, Cozzarelli NR (2004) Topological domain structure of the Escherichia coli chromosome. Genes Dev 18:1766–1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian Z, Macvanin M, Dimitriadis EK, He X, Zhurkin V, Adhya S (2015) A new noncoding RNA arranges bacterial chromosome organization. mBio 6(4):e00998–15. doi:10.1128/mBio.00998-15.

  • Raghavan R, Groisman EA, Ochman H (2011) Genome-wide detection of novel regulatory RNAs in E. coli. Genome Res 21:1487–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocco F, De Gregorio E, Di Nocera PP (2010) A giant family of short palindromic sequences in Stenotrophomonas maltophilia. FEMS Microbiol Lett 308:185–192

    CAS  PubMed  Google Scholar 

  • Rudd KE (1998) Linkage map of Escherichia coli K-12, edition 10: the physical map. Microbiol Mol Biol Rev MMBR 62:985–1019

    CAS  PubMed  Google Scholar 

  • Sternberg SH, Richter H, Charpentier E, Qimron U (2016) Adaptation in CRISPR-Cas systems. Mol Cell 61:797–808

    Article  CAS  PubMed  Google Scholar 

  • Tobes R, Pareja E (2005) Repetitive extragenic palindromic sequences in the Pseudomonas syringae pv. tomato DC3000 genome: extragenic signals for genome reannotation. Res Microbiol 156:424–433

    Article  CAS  PubMed  Google Scholar 

  • Tobes R, Ramos JL (2005) REP code: defining bacterial identity in extragenic space. Environ Microbiol 7:225–228

    Article  CAS  PubMed  Google Scholar 

  • Ton-Hoang B, Siguier P, Quentin Y, Onillon S, Marty B, Fichant G, Chandler M (2012) Structuring the bacterial genome: Y1-transposases associated with REP-BIME sequences. Nucl Acids Res 40:3596–3609

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Ames GF (1988) DNA gyrase binds to the family of prokaryotic repetitive extragenic palindromic sequences. Proc Natl Acad Sci USA 85:8850–8854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Li F (2016) Are all repeats created equal? Understanding DNA repeats at an individual level. Curr Genet. doi:10.1007/s00294-016-0619-x

Download references

Acknowledgments

The work on naRNA was supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, and the Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankar Adhya.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Z., Adhya, S. DNA repeat sequences: diversity and versatility of functions. Curr Genet 63, 411–416 (2017). https://doi.org/10.1007/s00294-016-0654-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-016-0654-7

Keywords

Navigation