Skip to main content
Log in

Membrane transporters in self resistance of Cercospora nicotianae to the photoactivated toxin cercosporin

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The goal of this work is to characterize membrane transporter genes in Cercospora fungi required for autoresistance to the photoactivated, active-oxygen-generating toxin cercosporin they produce for infection of host plants. Previous studies implicated a role for diverse membrane transporters in cercosporin resistance. In this study, transporters identified in a subtractive cDNA library between a Cercospora nicotianae wild type and a cercosporin-sensitive mutant were characterized, including two ABC transporters (CnATR2, CnATR3), an MFS transporter (CnMFS2), a uracil transporter, and a zinc transport protein. Phylogenetic analysis showed that only CnATR3 clustered with transporters previously characterized to be involved in cercosporin resistance. Quantitative RT-PCR analysis of gene expression under conditions of cercosporin toxicity, however, showed that only CnATR2 was upregulated, thus this gene was selected for further characterization. Transformation and expression of CnATR2 in the cercosporin-sensitive fungus Neurospora crassa significantly increased cercosporin resistance. Targeted gene disruption of CnATR2 in the wild type C. nicotianae, however, did not decrease resistance. Expression analysis of other transporters in the cnatr2 mutant under conditions of cercosporin toxicity showed significant upregulation of the cercosporin facilitator protein gene (CFP), encoding an MFS transporter previously characterized as playing an important role in cercosporin autoresistance in Cercospora species. We conclude that cercosporin autoresistance in Cercospora is mediated by multiple genes, and that the fungus compensates for mutations by up-regulation of other resistance genes. CnATR2 may be a useful gene, alone or in addition to other known resistance genes, for engineering Cercospora resistance in crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amnuaykanjanasin A, Daub ME (2009) The ABC transporter ATR1 is necessary for efflux of the toxin cercosporin in the fungus Cercospora nicotianae. Fung Genet Biol 46:146–158

    Article  CAS  Google Scholar 

  • Beseli A, Goulart da Silva M, Daub ME (2015) The role of Cercospora zeae-maydis homologs of Rhodobacter sphaeroides 1O2-resistance genes in resistance to the photoactivated toxin cercosporin. FEMS Microbiol Lett 362:1–7

    Article  PubMed  Google Scholar 

  • Burge CB (1998) Modeling dependencies in pre-mRNA splicing signals. In: Salzberg S, Searls D, Kasif S (eds) Computational methods in molecular biology, vol 8. Elsevier Science, Amsterdam, pp 127–163

    Google Scholar 

  • Callahan T, Rose M, Meade M, Ehrenshaft M, Upchurch R (1999) CFP, the putative cercosporin transporter of Cercospora kikuchii, is required for wild type cercosporin production, resistance, and virulence on soybean. Mol Plant Microbe Interact 12:901–910

    Article  CAS  PubMed  Google Scholar 

  • Chen HQ, Lee MH, Daub ME, Chung KR (2007a) Molecular analysis of the cercosporin biosynthetic gene cluster in Cercospora nicotianae. Mol Microbiol 64:755–770

    Article  CAS  PubMed  Google Scholar 

  • Chen HQ, Lee MH, Chung KR (2007b) Functional characterization of three genes encoding putative oxidoreductases required for cercosporin toxin biosynthesis in the fungus Cercospora nicotianae. Microbiology 153:2781–2790

    Article  CAS  PubMed  Google Scholar 

  • Choquer M, Lahey KA, Chen HL, Cao L, Ueng PP, Daub ME, Chung KR (2005) The CTB1 gene encoding a fungal polyketide synthase is required for cercosporin toxin biosynthesis and fungal virulence in Cercospora nicotianae. Molec Plant Microbe Interact 18:468–476

    Article  CAS  Google Scholar 

  • Choquer M, Lee MH, Bau HJ, Chung KR (2007) Deletion of a MFS transporter-like gene in Cercospora nicotianae reduces cercosporin toxin accumulation and fungal virulence. FEBS Lett 581:489–494

    Article  CAS  PubMed  Google Scholar 

  • Chung KR, Daub ME, Kuchler K, Schaller C (2003) The CRG1 gene required for resistance to the singlet oxygen-generating cercosporin toxin in Cercospora nicotianae encodes a putative fungal transcription factor. Biochem Biophys Res Commun 302:302–310

    Article  CAS  PubMed  Google Scholar 

  • Dahl SG, Sylte I, Ravna AW (2004) Structures and models of transporter proteins. J Pharmacol Exp Ther 309:302–310

    Article  Google Scholar 

  • Daub ME, Chung KR (2009) Photoactivated perylenequinone toxins in plant pathogenesis. In: Deising H (ed) The mycota V plant relationships, 2nd edn. Springer-Verlag, Berlin

    Google Scholar 

  • Daub ME, Leisman GB, Clark RA, Bowden EF (1992) Reductive detoxification as a mechanism of fungal resistance to singlet-oxygen-generating photosensitizers. Proc Natl Acad Sci USA 89:9588–9592

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Daub ME, Herrero S, Chung KR (2013) Reactive oxygen species in plant pathogenesis: the role of perylenequinone photosensitizers. Antiox Redox Signal 19:970–989

    Article  CAS  Google Scholar 

  • De Wit PJ, Van der Burgt A, Ökmen B, Stergiopoulos I, Abd-Elsalam KA, Aerts AL, Bahkali AH, Beenen HG, Chettri P, Cox MP, Datema E, De Vries RP, Dhillon B, Ganley AR, Griffiths SA, Guo Y, Hamelin RC, Henrissat B, Kabir MS, Jashni MK, Kema G, Klaubauf S, Lapidus A, Levasseur A, Lindquist E, Mehrabi R, Ohm RA, Owen TJ, Salamov A, Schwelm A, Schijlen E, Sun H, Van den Burg HA, Van Ham RC, Zhang S, Goodwin SB, Grigoriev IV, Collemare J, Bradshaw RE (2012) The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry. PLoS Genet. doi:10.1371/journal.pgen.1003088

    PubMed Central  PubMed  Google Scholar 

  • Deininger P (1990) Molecular cloning: a laboratory manual. Anal Biochem 186:182–183

    Article  Google Scholar 

  • Dunnett CW (1955) A multiple comparison procedure for comparing several treatments with a control. J Am Stat Assoc 50:1096–1121

    Article  Google Scholar 

  • Ehrenshaft M, Bilski P, Li M, Chignell CF, Daub ME (1999) A highly conserved sequence is a novel gene involved in de novo vitamin B6 biosynthesis. Proc Natl Acad Sci USA 96:9374–9378

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fachin AL, Maffei CM, Martinez-Rossi NM (1996) In vitro susceptibility of Trichophyton rubrum isolates to griseofulvin and tioconazole. Induction and isolation of a resistant mutant to both antimycotic drugs. Mycopathologia 135:141–143

    Article  CAS  PubMed  Google Scholar 

  • Felder T, Bogengruber E, Tenreiro S, Ellinger A, Sá-Correia I, Briza P (2002) Dtr1p, a multidrug resistance transporter of the major facilitator superfamily, plays an essential role in spore wall maturation in Saccharomyces cerevisiae. Eukaryot Cell 1(5):799–810

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hayashi K, Schoonbeek HJ, De Waard MA (2002) Bcmfs1, a novel major facilitator superfamily transporter from Botrytis cinerea, provides tolerance towards the natural toxic compounds camptothecin and cercosporin and towards fungicides. Appl Environ Microbiol 68:4996–5004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Herrero S, Daub ME (2007) Genetic manipulation of vitamin B-6 biosynthesis in tobacco and fungi uncovers limitations to up-regulation of the pathway. Plant Sci 172:609–620

    Article  CAS  Google Scholar 

  • Herrero S, Amnuaykanjanasin A, Daub ME (2007) Identification of genes differentially expressed in the phytopathogenic fungus Cercospora nicotianae between cercosporin toxin-resistant and -susceptible strains. FEMS Microbiol Lett 275:326–337

    Article  CAS  PubMed  Google Scholar 

  • Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113

    Article  CAS  PubMed  Google Scholar 

  • Higgins CF (2007) Multiple molecular mechanisms for multidrug resistance transporters. Nature 446:749–757

    Article  CAS  PubMed  Google Scholar 

  • Jacobs M, Stahl U (1995) Gene regulation in mycelial fungi. In: Kueck U (ed) The mycota, II; genetics and biotechnology. Springer-Verlag, New York, pp 155–167

    Chapter  Google Scholar 

  • Jendzelovsky R, Mikes J, Koval J, Soucek K, Prochazkova J, Kello M, Sackova V, Hofmanova J, Kozubik A, Fedorocko P (2009) Drug efflux transporters, MRP1 and BCRP, affect the outcome of hypericin-mediated photodynamic therapy in HT-29 adenocarcinoma cells. Photochem Photobiol Sci 8:1716–1723

    Article  CAS  PubMed  Google Scholar 

  • Jenns AE, Daub ME (1995) Characterization of mutants of Cercospora-nicotianae sensitive to the toxin cercosporin. Phytopathology 85:906–912

    Article  CAS  Google Scholar 

  • Jenns AE, Daub ME, Upchurch RG (1989) Regulation of cercosporin accumulation in culture by medium and temperature manipulation. Phytopathology 79:213–219

    Article  CAS  Google Scholar 

  • Jenns AE, Scott DL, Bowden EF, Daub ME (1995) Isolation of mutants of the fungus Cercospora nicotianae altered in their response to singlet-oxygen-generating photosensitizers. Photochem Photobiol Sci 61:488–493

    Article  CAS  Google Scholar 

  • Jones PM, George AM (2002) Mechanism of ABC transporters: a molecular dynamics simulation of a well characterized nucleotide-binding subunit. Proc Natl Acad Sci 99:12639–12644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keim M, Williams RS, Harwood AJ (2004) An inverse PCR technique to rapidly isolate the flanking DNA of dictyostelium insertion mutants. Mol Biotechnol 26:221–224

    Article  CAS  PubMed  Google Scholar 

  • Kristensen AS, Andersen J, Jörgensen TN, Sörensen L, Eriksen J, Loland CJ, Strömgaard K, Gether U (2011) SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev 63:585–640

    Article  CAS  PubMed  Google Scholar 

  • Lamping E, Baret PV, Holmes AR, Monk BC, Goffeau A, Cannon RD (2010) Fungal PDR transporters:phylogeny, topology, motifs and function. Fung Genet Biol 47:127–142

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–403

    Article  CAS  PubMed  Google Scholar 

  • Lorang JM, Tuori RP, Martinez JP, Sawyer TL, Redman RS, Rollins JA, Wolpert JT, Johnson KB, Rodriguez RJ, Dickman MB, Ciuffetti LM (2001) Green fluorescent protein is lighting up fungal biology. Appl Environ Microb 67:1987–1994

    Article  CAS  Google Scholar 

  • Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Lu S, Marchler GH, Song JS, Thanki N, Yamashita RA, Zhang D, Bryant SH (2011) CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 41:D384–D389

    Google Scholar 

  • Nagao K, Taguchi Y, Arioka M, Kadokura H, Takatsuki A, Yoda K, Yamasaki M (1995) BFR1+, a novel gene of Schizosaccharomyces pombe which confers brefeldin A resistance, is structurally related to the ATP-binding cassette superfamily. J Bacteriol 177:1536–1543

    PubMed Central  CAS  PubMed  Google Scholar 

  • Panagiotis M, Kritonas K, Irini NO, Kiriaki C, Nicolaos P, Athanasios T (2007) Expression of the yeast cpd1 gene in tobacco confers resistance to the fungal toxin cercosporin. Biomolec Eng 24:245–251

    Article  CAS  Google Scholar 

  • Pantazopoulou A, Diallinas G (2007) Fungal nucleobase transporters. FEMS Microbiol Rev 31:657–675

    Article  CAS  PubMed  Google Scholar 

  • Pao SS, Paulsen IT, Saier MH Jr (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rockwell NC, Wolfger H, Kuchler K, Thorner J (2009) ABC transporter Pdr10 regulates the membrane microenvironment of Pdr12 in Saccharomyces cerevisiae. J Membr Biol 229:27–52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roohparvar R, De Waard MA, Kema GHJ, Zwiers LH (2007) MgMfs1, a major facilitator superfamily transporter from the fungal wheat pathogen Mycosphaerella graminicola, is a strong protectant against natural toxic compounds and fungicides. Fung Genet Biol 44:378–388

    Article  CAS  Google Scholar 

  • Salazar G, Falcon-Perez JM, Harrison R, Faundez V (2009) SLC30A3 (ZnT3) oligomerization by dityrosine bonds regulates its subcellular localization and metal transport capacity. PLoS One 4(6):e5896. doi:10.1371/journalpone0005896

    Article  PubMed Central  PubMed  Google Scholar 

  • Schmittgen TD, Zakrajsek BA, Mills AG, Gorn V, Singer MJ, Reed MW (2000) Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal Biochem 285:194–204

    Article  CAS  PubMed  Google Scholar 

  • Schnabel G, Dai Q, Paradkar MR (2003) Cloning and expression analysis of the ATP binding cassette transporter MFABC1 gene and the alternative oxidase gene MfAOX1 from Monilinia fructicola. Pest Manag Sci 59:1143–1151

    Article  CAS  PubMed  Google Scholar 

  • Servos J, Haase E, Brendel M (1993) Gene SNQ2 of Saccharomyces cerevisiae, which confers resistance to 4-nitroquinoline-N-oxide and other chemicals, encodes a 169 kDa protein homologous to ATP-dependent permeases. Mol Gen Genet 236:214–218

    Article  CAS  PubMed  Google Scholar 

  • Smith KM, Kothe GO, Matsen CB, Khlafallah TK, Adhvaryu KK, Hemphill M, Freitag M, Motamedi MR, Selker EU (2008) The fungus Neurospora crassa displays telomeric silencing mediated by multiple sirtuins and by methylation of histone H3 lysine 9. Epigenet Chromatin 1:5

    Article  Google Scholar 

  • Stefanato F, Abou-Mansour E, Buchala A, Kretschmer M, Mosbach A, Hahn M, Bochet C, Metraux JP, Schoonbeek HJ (2009) The ABC-transporter BcatrB from Botrytis cinerea exports camalexin and is a virulence factor on Arabidopsis thaliana. Plant J 58:499–510

    Article  CAS  PubMed  Google Scholar 

  • Stoessl A, Abramowski Z, Lester HH, Rock GL, Towers GHN (1990) Further toxic properties of the fungal metabolite dothistromin. Mycopathologia 112:179–186

    Article  CAS  PubMed  Google Scholar 

  • Sweigard J, Chumley F, Carroll A, Farrall L, Valent B (1997) A series of vectors for fungal transformation. Fung Genet Newslett 44:52–53

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL-X windows interface. Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Toone EJ (2011) Advances in Enzymology and Related Areas of Molecular Biology. In: Barabote D, Thekkiniath J, Strauss RE, Vediyappan G (eds) Xenobiotic efflux in bacteria and fungi: a genomics update. John Wiley and Sons Inc., Hoboken, p 271

    Google Scholar 

  • Ververidis P, Davrazou F, Diallinas G, Georgakopoulos D, Kanellis AK, Panopoulos N (2001) A novel putative reductase (Cpd1p) and the multidrug exporter Snq2p are involved in resistance to cercosporin and other singlet oxygen-generating photosensitizers in Saccharomyces cerevisiae. Curr Genet 39:127–136

    Article  CAS  PubMed  Google Scholar 

  • Vogel HJ (1956) A convenient growth medium for Neurospora (medium N). Microbial Genet Bull 13:42–43

    Google Scholar 

  • Wang H, Qi M, Cutler A (1993) A simple method of preparing plant samples for PCR. Nucleic Acids Res 21:4153–4154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weyand S, Shimamura T, Yajima S, Suzuki S, Mirza O, Krusong K, Carpenter EP, Rutherford NG, Hadden JM, O’Reilly J, Ma P, Saidijam M, Patching SG, Hope RJ, Norbertczak HT, Roach PC, Iwata S, Henderson PJ, Cameron AD (2008) Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter. Science 322:709–713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Winer J (1999) Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal Biochem 270:41–49

    Article  CAS  PubMed  Google Scholar 

  • Wright E, Loo DD, Hirayama BA, Turk E (2004) Surprising versatility of Na+/glucose cotransporters (SLC5). Physiology 19:370–376

    Article  CAS  PubMed  Google Scholar 

  • You B, Lee MH, Chung KR (2009) Gene-specific disruption in the filamentous fungus Cercospora nicotianae using a split-marker approach. Arch Microbiol 191:615–622

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Necip Baris Kacar and Consuelo Arellano for assistance with statistical analyses and Dr. Marilia Goulart da Silva for technical help. This research was supported in part from the USDA cooperative agreement# 58-3148-1-161.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret E. Daub.

Additional information

Communicated by M. Kupiec.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 48 kb)

Supplementary material 2 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beseli, A., Amnuaykanjanasin, A., Herrero, S. et al. Membrane transporters in self resistance of Cercospora nicotianae to the photoactivated toxin cercosporin. Curr Genet 61, 601–620 (2015). https://doi.org/10.1007/s00294-015-0486-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-015-0486-x

Keywords

Navigation