Skip to main content
Log in

Genome-wide analysis of cell wall-related genes in Tuber melanosporum

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

A genome-wide inventory of proteins involved in cell wall synthesis and remodeling has been obtained by taking advantage of the recently released genome sequence of the ectomycorrhizal Tuber melanosporum black truffle. Genes that encode cell wall biosynthetic enzymes, enzymes involved in cell wall polysaccharide synthesis or modification, GPI-anchored proteins and other cell wall proteins were identified in the black truffle genome. As a second step, array data were validated and the symbiotic stage was chosen as the main focus. Quantitative RT-PCR experiments were performed on 29 selected genes to verify their expression during ectomycorrhizal formation. The results confirmed the array data, and this suggests that cell wall-related genes are required for morphogenetic transition from mycelium growth to the ectomycorrhizal branched hyphae. Labeling experiments were also performed on T. melanosporum mycelium and ectomycorrhizae to localize cell wall components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aimanianda V, Bayry J, Bozza S, Kniemeyer O, Perruccio K, Elluru SR, Clavaud C, Paris S, Brakhage AA, Kaveri SV, Romani L, Latge JP (2009) Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 460:1117–1121

    Article  PubMed  CAS  Google Scholar 

  • Amicucci A, Balestrini R, Kohler A, Barbieri E, Saltarelli R, Faccio A, Roberson RW, Bonfante P, Stocchi V (2011) Hyphal and cytoskeleton polarization in Tuber melanosporum: a genomic and cellular analysis. Fungal Genet Biol 48:561–572

    Article  PubMed  CAS  Google Scholar 

  • Balestrini R, Hahn MG, Bonfante P (1996) Location of cell-wall components in ectomycorrhizae of Corylus avellana and Tuber magnatum. Protoplasma 191:55–69

    Article  Google Scholar 

  • Balestrini R, Mainieri D, Soragni E, Garnero L, Rollino S, Viotti A, Ottonello S, Bonfante P (2000) Differential expression of chitin synthase III and IV mRNAs in ascomata of Tuber borchii Vittad. Fungal Genet Biol 31:219–232

    Article  PubMed  CAS  Google Scholar 

  • Balestrini R, Bianciotto V, Bonfante P (2011) Mycorrhizae in: Huang, Li, Sumner (eds) Handbook of Soil Sciences, Volume I. Taylor and Francis Group, Boca Raton, pp 24/29–24/40

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  • Borgia PT, Iartchouk N, Riggle PJ, Winter KR, Koltin Y, Bulawa CE (1996) The chsB gene of Aspergillus nidulans is necessary for normal hyphal growth and development. Fungal Genet Biol 20:193–203

    Article  PubMed  CAS  Google Scholar 

  • Borkovich KA, Alex LA, Yarden O et al (2004) Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 68:1–108

    Article  PubMed  CAS  Google Scholar 

  • Bowman SM, Free SJ (2006) The structure and synthesis of the fungal cell wall. BioEssays 28:799–808

    Article  PubMed  Google Scholar 

  • Brendel V, Bucher P, Nourbakhsh IR, Blaisdell BE, Karlin S (1992). “Methods and algorithms for statistical analysis of protein sequences.” Proceedings of the National Academy of Sciences of the United States of America 89 (6) (March 15):2002–2006

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  PubMed  CAS  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Choquer M, Boccara M, Goncalves IR, Soulié M-C, Vidal-Cros A (2004) Survey of the Botrytis cinerea chitin synthase multigenic family through the analysis of six euascomycetes genomes. Eur J Biochem 271:2153–2164

    Article  PubMed  CAS  Google Scholar 

  • Coronado JE, Mneimneh S, Epstein SL, Qiu WG, Lipke PN (2007) Conserved processes and lineage-specific proteins in fungal cell wall evolution. Eukaryot Cell 6:2269–2277

    Article  PubMed  CAS  Google Scholar 

  • Cserzo M, Eisenhaber F, Eisenhaber B, Simon I (2004) TM or not TM: transmembrane protein prediction with low false positive rate using DAS-TMfilter. Bioinformatics 20:136–137

    Article  PubMed  CAS  Google Scholar 

  • de Groot PWJ, Brandt BW, Horiuchi H, Ramd AFJ, de Koster CG, Klis FM (2009) Comprehensive genomic analysis of cell wall genes in Aspergillus nidulans. Fungal Genet Biol 46:S72–S81

    Article  PubMed  Google Scholar 

  • Denoeud F, Aury JM, Da Silva C, Noel B, Rogier O, Delledonne M, Morgante M, Valle G, Wincker P, Scarpelli C, Jaillon O, Artiguenave F (2008) Annotating genomes with massive-scale RNA sequencing. Genome Biol 9:R175

    Article  PubMed  Google Scholar 

  • Duo-Chuan L (2006) Review of fungal chitinases. Mycopathologia 161:345–360

    Article  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  • Eisenhaber B, Bork P, Eisenhaber F (1999) Prediction of potential GPI-modification sites in proprotein sequences. J Mol Biol 292:741–758

    Article  PubMed  CAS  Google Scholar 

  • Eisenhaber B, Schneider G, Wildpaner M, Eisenhaber F (2004) A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe. J Mol Biol 337:243–253

    Article  PubMed  CAS  Google Scholar 

  • Gruber S, Vaaje-Kolstad G, Matarese F, López-Mondéjar R, Kubicek CP, Seidl-Seiboth V (2011) Analysis of subgroup C of fungal chitinases containing chitin-binding and LysM modules in the mycoparasite Trichoderma atroviride. Glycobiology 21:122–133

    Article  PubMed  CAS  Google Scholar 

  • Käll L, Krogh A, Sonnhammer ELL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338:1027–1036

    Article  PubMed  Google Scholar 

  • Karlsson M, Stenlid J (2008) Comparative evolutionary histories of the fungal chitinase gene family reveal non-random size expansions and contractions due to adaptive natural selection. Evol Bioinform 4:47–60

    CAS  Google Scholar 

  • Kubicek C, Baker S, Gamauf C, Kenerley C, Druzhinina I (2008) Purifying selection and birth-and-death evolution in the class II hydrophobin gene families of the ascomycete Trichoderma/Hypocrea. BMC Evol Biol 8:4

    Article  PubMed  Google Scholar 

  • Kulkarni RD, Kelkar HS, Dean RA (2003) An eight-cysteine-containing CFEM domain unique to a group of fungal membrane proteins. TIBS 28:118–121

    PubMed  CAS  Google Scholar 

  • Kurita T, Noda Y, Takagi T, Osumi M, Yoda K (2011) Kre6 protein essential for yeast cell wall β-1,6-glucan synthesis accumulates at sites of polarized growth. J Biol Chem 286:7429–7438

    Article  PubMed  CAS  Google Scholar 

  • Laurent P, Voiblet C, Tagu D, de Carvalho D, Nehls U, De Bellis R, Balestrini R, Bauw G, Bonfante P, Martin F (1999) A novel class of ectomycorrhiza-regulated cell wall polypeptides in Pisolithus tinctorius. Mol Plant Microbe Interact 12:862–871

    Article  PubMed  CAS  Google Scholar 

  • Lesage G, Bussey H (2006) Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:317–343

    Article  PubMed  CAS  Google Scholar 

  • Martin F, Laurent P, de Carvalho D, Voiblet C, Balestrini R, Bonfante P, Tagu D (1999) Cell wall proteins of the ectomycorrhizal basidiomycete Pisolithus tinctorius: identification, function, and expression in symbiosis. Fungal Genet Biol 27:161–174

    Article  PubMed  CAS  Google Scholar 

  • Martin F, Kohler A, Murat C, Balestrini R et al (2010) Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–1038

    Article  PubMed  CAS  Google Scholar 

  • Martin-Urdiroz M, Roncero MIG, Gonzalez-Reyes JA, Ruiz-Roldan C (2008) ChsVb, a Class VII chitin synthase involved in septation, is critical for pathogenicity in Fusarium oxysporum. Eukaryot Cell 7:112–121

    Article  PubMed  CAS  Google Scholar 

  • Miozzi L, Balestrini R, Bolchi A, Novero M, Ottonello S, Bonfante P (2005) Phospholipase A2 up‐regulation during mycorrhiza formation in Tuber borchii. New Phytol 167:229–238

    Article  PubMed  CAS  Google Scholar 

  • Montijn RC, Vink E, Muller WH, Verkleij AJ, Van Den Ende H, Henrissat B, Klis FM (1999) Localization of synthesis of β-1,6-glucan in Saccharomyces cerevisiae. J Bacteriol 181:7414–7420

    PubMed  CAS  Google Scholar 

  • Ooi HS, Kwo CY, Wildpaner M, Sirota FL, Eisenhaber B, Maurer-Stroh S, Wong WC, Schleiffer A, Eisenhaber F, Schneider G (2009) ANNIE: integrated de novo protein sequence annotation. Nucleic Acids Res 37:435–440

    Article  Google Scholar 

  • Pardo M, Monteoliva L, Vazquez P, Martinez R, Molero G, Nombela C, Gil C (2004) PST1 and ECM33 encode two yeast cell surface GPI proteins important for cell wall integrity. Microbiology 150:4157–4170

    Article  PubMed  CAS  Google Scholar 

  • Pel HJ, De Winde JH, Archer DB et al (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 51388. Nat Biotech 25:221–231

    Article  Google Scholar 

  • Ragni E, Fontaine T, Gissi C, Latgè JP, Popolo L (2007) The Gas family of proteins of Saccharomyces cerevisiae: characterization and evolutionary analysis. Yeast 24:297–308

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Herrera J, Ortiz-Castellanos L, Martínez A-I, León-Ramírez C, Sentandreu R (2008) Analysis of the proteins involved in the structure and synthesis of the cell wall of Ustilago maydis. Fungal Genet Biol 45:S71–S76

    Article  PubMed  CAS  Google Scholar 

  • Seidl V (2008) Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions. Fungal Biol Rev 22:36–42

    Article  Google Scholar 

  • Seidl-Seiboth V, Gruber S, Sezerman U, Schwecke T, Albayrak A, Neuhof T, Von Döhren H, Baker SE, Kubicek CP (2011) Novel hydrophobins from Trichoderma define a new hydrophobin subclass: protein properties, evolution, regulation and processing. J Mol Evol 72:339–351

    Article  PubMed  CAS  Google Scholar 

  • Shahinian S, Bussey H (2000) β-1,6-Glucan synthesis in Saccharomyces cerevisiae. Mol Microbiol 35:477–489

    Article  PubMed  CAS  Google Scholar 

  • Soragni E, Bolchi A, Balestrini R, Gambaretto C, Percudani R, Bonfante P, Ottonello S (2001) A nutrient-regulated, dual localization phospholipase A2 in the symbiotic fungus Tuber borchii. EMBO J 20:5079–5090

    Article  PubMed  CAS  Google Scholar 

  • Tagu D, De Bellis R, Balestrini R, de Vries OMH, Piccoli G, Stocchi V, Bonfante P, Martin F (2001) Immunolocalization of hydrophobin HYDPt-1 from the ectomycorrhizal basidiomycete Pisolithus tinctorius during colonization of Eucalyptus globulus roots. New Phytol 149:127–135

    Article  CAS  Google Scholar 

  • Takeshita N, Yamashita S, Ohta A, Horiuchi H (2006) Aspergillus nidulans class V and VI chitin synthases CsmA and CsmB, each with a myosin motor-like domain, perform compensatory functions that are essential for hyphal tip growth. Mol Microbiol 59:1380–1394

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Thevissen K, Idkowiak-Baldys J, Im YJ, Takemoto J, François IE, Ferket KK, Aerts AM, Meert EM, Winderickx J, Roosen J, Cammue BP (2005) SKN1, a novel plant defensin-sensitivity gene in Saccharomyces cerevisiae, is implicated in sphingolipid biosynthesis. FEBS Lett 579:1973–1977

    Article  PubMed  CAS  Google Scholar 

  • Treitschke S, Doehlemann G, Schuster M, Steinberg G (2010) The myosin motor domain of fungal chitin synthase V is dispensable for vesicle motility but required for virulence of the maize pathogen Ustilago maydis. Plant Cell 22:2476–2494

    Article  PubMed  CAS  Google Scholar 

  • Tsigos I, Bouriotis V (1995) Purification and characterization of chitin deacetylase from Colletotrichum lindemuthianum. J Biol Chem 270:26286–26291

    Article  PubMed  CAS  Google Scholar 

  • Tsigos I, Martinou A, Kafetzopoulos D, Bouriotis V (2000) Chitin deacetylases: new, versatile tools in biotechnology. Trends Biotech 18:305–312

    Article  CAS  Google Scholar 

  • Tusnády GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17:849–850

    Article  PubMed  Google Scholar 

  • van den Burg HA, Harrison SJ, Joosten MH, Vervoort J, de Wit PJ (2006) Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. Mol Plant Microbe Interact 19:1420–1430

    Article  PubMed  Google Scholar 

  • Weber I, Aßmann D, Thines E, Steinberg G (2006) Polar localizing class v myosin chitin synthases are essential during early plant infection in the plant pathogenic fungus Ustilago maydis. Plant Cell 18:225–242

    Article  PubMed  CAS  Google Scholar 

  • Whiteford JR, Spanu PD (2002) Hydrophobins and the interactions between fungi and plants. Mol Plant Pathol 3:391–400

    Article  PubMed  CAS  Google Scholar 

  • Zampieri E, Balestrini R, Kohler A, Abbà S, Martin F, Bonfante P (2011) The Perigord black truffle responds to cold temperature with an extensive reprogramming of its transcriptional activity. Fungal Genet Biol 48:585–591

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Tuber genome sequencing project is a collaborative effort involving the Génoscope-CEA and the Tuber Genome Consortium. The authors would like to thank Emmanuelle Morin and Stefano Ghignone for the bioinformatics support; Elisa Zampieri for the help during the preparation of the manuscript, Michele Buffalini, Paola Ceccaroli and Shwet Kamal for the annotation of some genes cited in the paper. This research was funded by PRIN2007; FS’s fellowship PhD was funded by Università di Torino.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaella Balestrini.

Additional information

Communicated by B. Cormack.

R. Balestrini and F. Sillo equally contributed to the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1 (DOC 55 kb)

Table S2 (DOC 235 kb)

Table S3 (DOC 38 kb)

294_2012_374_MOESM4_ESM.pdf

Table S4. GPI-prediction by using the fungal-specific big-PI algorithm (Eisenhaber et al. 2004) and checking for a predicted signal peptide (Bendtsen et al. 2004). There is experimental evidence for alternative or secondary GPI-anchor attachment sites (Eisenhaber et al. 1999). As such, the predictor reports a main and a secondary site (1: and 2:), each one classified with a letter (P, predicted; S, twilight zone prediction; I, physical properties are not right, but profile matches; N, neither physical properties nor profile matches). The best hit is shown first and is either P or S: if the first one is P, the second one can be P, S or N, or if the first one is S it can be S, I or N. An additional step to check for potential transmembrane domains (TM) in the mature protein has been performed. (PDF 52 kb)

294_2012_374_MOESM5_ESM.xls

Table S5. Expression data for the GPI-anchored protein subset. The individual sheets contain the array and the Solexa/Illumina data as explained in the Supplemental file. (XLS 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balestrini, R., Sillo, F., Kohler, A. et al. Genome-wide analysis of cell wall-related genes in Tuber melanosporum . Curr Genet 58, 165–177 (2012). https://doi.org/10.1007/s00294-012-0374-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-012-0374-6

Keywords

Navigation