Skip to main content

Advertisement

Log in

Expression of the Acremonium chrysogenum cefT gene in Penicillum chrysogenum indicates that it encodes an hydrophilic β-lactam transporter

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The Acremonium chryrsogenum cefT gene encoding a membrane protein of the major facilitator superfamily implicated in the cephalosporin biosynthesis in A. chrysogenum was introduced into Penicillium chrysogenum Wisconsin 54-1255 (a benzylpenicillin producer), P. chrysogenum npe6 pyrG (a derivative of Wisconsin 54-1255 lacking a functional penDE gene) and P. chrysogenum TA98 (a deacetylcephalosporin producer containing the cefD1, cefD2, cefEF and cefG genes from A. chrysogenum). RT-PCR analysis revealed that the cefT gene was expressed in P. chrysogenum strains. HPLC analysis of the culture broths of the TA98 transformants showed an increase in the secretion of deacetylcephalosporin C and hydrophilic penicillins (isopenicillin N and penicillin N). P. chrysogenum Wisconsin 54-1255 strain transformed with cefT showed increased secretion of the isopenicillin N intermediate and a drastic decrease in the benzylpenicillin production. Southern and northern blot analysis indicated that the untransformed P. chrysogenum strains contain an endogenous gene similar to cefT that may be involved in the well-known secretion of the isopenicillin N intermediate. In summary, the cefT transporter is a hydrophilic β-lactam transporter that is involved in the secretion of hydrophilic β-lactams containing α-aminoadipic acid side chain (isopenicillin N, penicillin N and deacetylcephalosporin C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aharonowitz Y, Cohen G, Martín JF (1992) Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation and evolution. Annu Rev Microbiol 46:461–495

    Article  PubMed  CAS  Google Scholar 

  • Andrade AC, Del Sorbo G, Van Nistelrooy JG, Waard MA (2000) The ABC transporter AtrB from Aspergillus nidulans mediates resistance to all major classes of fungicides and some natural toxic compounds. Microbiology 146:1987–1997

    PubMed  CAS  Google Scholar 

  • Brakhage AA (1998) Molecular regulation of beta-lactam biosynthesis in filamentous fungi. Microbiol Mol Biol Rev 62:547–585

    PubMed  CAS  Google Scholar 

  • Cantoral JM, Díez B, Barredo JL, Alvarez E, Martín JF (1987) High-frequency transformation of Penicillium chrysogenum. Biotechnology 5:494–497

    Article  CAS  Google Scholar 

  • Cantoral JM, Gutiérrez S, Fierro F, Gil-Espinosa S, van Liempt H, Martín JF (1993) Biochemical and characterization and molecular genetics of nine mutants of Penicillium chrysogenum impaired in penicillin biosynthesis. J Biol Chem 268:737–744

    PubMed  CAS  Google Scholar 

  • Cantwell C, Beckmann R, Whiteman P, Queener SW, Abraham EP (1992) Isolation of deacetoxycephalosporin C from fermentation broths of Penicillium chrysogenum transformants: construction of a new fungal biosynthetic pathway. Proc R Soc Lond B 248:283–289

    Article  CAS  Google Scholar 

  • Casqueiro J, Bañuelos O, Gutiérrez S, Hijarrubia MJ, Martín JF (1999a) Intrachromosomal recombination in Penicillium chrysogenum: gene conversion and deletion events. Mol Gen Genet 261:994–1000

    Article  PubMed  CAS  Google Scholar 

  • Casqueiro J, Gutiérrez S, Bañuelos O, Hijarrubia MJ, Martín JF (1999b) Gene targeting in Penicillium chrysogenum: disruption of the lys2 gene leads to penicillin overproduction. J Bacteriol 181:1181–1188

    PubMed  CAS  Google Scholar 

  • Crawford L, Stepan AM, McAda PC, Rambonsek JA, Conder MJ, Vinci VA, Reeves CD (1995) Production of cephalosporin intermediates by feeding adipic acid to recombinant Penicillium chrysogenum strains expressing ring activity. Biotechnology 13:58–62

    Article  PubMed  CAS  Google Scholar 

  • Demain AL, Elander RP (1999) The beta-lactam antibiotics: past, present, and future. Antonie Van Leeuwenhoek 75:5–19

    Article  PubMed  CAS  Google Scholar 

  • Demain AL, Zhang J (1998) Cephalosporin C production by Cephalosporium acremonium: the methionine story. Crit Rev Biotechnol 18:283–294

    Article  PubMed  CAS  Google Scholar 

  • Díez B, Alvarez E, Cantoral JM, Barredo JL, Martín JF (1987) Isolation and characterization of pyrG mutants of Penicillium chrysogenum by resistance to 5′-fluoroorotic acid. Curr Genet 12:277–282

    Article  Google Scholar 

  • Díez B, Mellado E, Rodríguez M, Fouces R, Barredo JL (1997) Recombinant microorganisms for industrial production of antibiotics. Biotechnol Bioeng 55:216–226

    Article  PubMed  Google Scholar 

  • Drew SW, Demain AL (1973) Methionine control of cephalosporin C formation. Biotechnol Bioeng 15:743–754

    Article  PubMed  CAS  Google Scholar 

  • Elander RP (2003) Industrial production of beta-lactam antibiotics. Appl Microbiol Biotechnol 61:385–392

    PubMed  CAS  Google Scholar 

  • Fernández FJ, Gutiérrez S, Velasco J, Montenegro E, Marcos AT, Martín JF (1994) Molecular characterization of three loss-of-function mutations in the isopenicillin N acyltransferase gene (penDE) of Penicillium chrysogenum. J Bacteriol 176:4941–4948

    PubMed  Google Scholar 

  • Fierro F, Gutiérrez S, Díez B, Martín JF (1993) Resolution of four chromosomes in penicillin-producing filamentous fungi: the penicillin gene cluster is located on chromosome II (9.6 Mb) in Penicillium notatum and chromosome I (10.4 Mb) in Penicillium chrysogenum. Mol Gen Genet 241:573–578

    Article  PubMed  CAS  Google Scholar 

  • Fierro F, Barredo JL, Díez B, Gutiérrez S, Fernández FJ, Martín JF (1995) The penicillin gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences. Proc Natl Acad Sci USA 92:6200–6204

    Article  PubMed  CAS  Google Scholar 

  • Fierro F, Montenegro E, Gutiérrez S, Martín JF (1996) Mutants blocked in penicillin biosynthesis show a deletion of the entire penicillin gene cluster at a specific site within a conserved hexanucleotide sequence. Appl Microbiol Biotechnol 44:597–604

    Article  PubMed  CAS  Google Scholar 

  • García-Estrada C, Vaca I, Lamas-Maceiras M, Martín JF (2007) In vivo transport of the intermediates of the penicillin biosynthetic pathway in tailored strains of Penicillium chrysogenum. Appl Microbiol Biotechnol 76:169–182

    Article  PubMed  Google Scholar 

  • Gutiérrez S, Díez B, Álvarez E, Barredo JL, Martín JF (1991) Expression of the penDE gene of Penicillium chrysogenum encoding isopenicillin N acyltransferase in Cephalosporium acremonium: production of benzylpenicillin by the transformants. Mol Gen Genet 225:56–64

    Article  PubMed  Google Scholar 

  • Komatsu KI, Mizuno M, Kodaira R (1975) Effect of methionine on cephalosporin C and penicillin N production by a mutant of Cephalosporium acremonium. J Antibiot 28:881–888

    PubMed  CAS  Google Scholar 

  • Le Page GA, Campbell E (1946) Preparation of streptomycin. J Biol Chem 162:163–171

    CAS  Google Scholar 

  • Liras P, Martín JF (2006) Gene clusters for β-lactam antibiotics and control of their expression: why have clusters been formed and where do they come from? Int Microbiol 9:9–19

    PubMed  CAS  Google Scholar 

  • Martín JF, Demain AL (2002) Unraveling the methionine-cephalosporin puzzle in Acremonium chrysogenum. Trends Biotechnol 20:502–507

    Article  PubMed  Google Scholar 

  • Martín JF, Ullán RV, Casqueiro J (2004) Novel genes involved in cephalosporin biosynthesis: the three-component isopenicillin N epimerase system. Adv Biochem Eng Biotechnol 88:91–109

    PubMed  Google Scholar 

  • Martín JF, Casqueiro J, Liras P (2005) Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication. Curr Opin Microbiol 8:282–293

    Article  PubMed  Google Scholar 

  • Nijland JG, Evers ME, Driessen AJM (2005) The isolation and identification of a cephalosporin transporter homologue in Penicillium chrysogenum. Fungal Genetics Newsletter, 52-Supplement. XXIII-Fungal Genetics Conference. Cell Biology 42, pp 50

  • Rodríguez-Sáiz M, Lembo M, Bertetti L, Muraca R, Velasco J, Malcangi A, de la Fuente JL, Barredo JL (2004) Strain improvement for cephalosporin production by Acremonium chrysogenum using geneticin as a suitable transformation marker. FEMS Microbiol Lett 235:43–49

    Article  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Shen YQ, Wolfe S, Demain AL (1986) Levels of isopenicillin N synthetase and deacetoxycephalosporin C synthetase in Cephalosporium acremonium producing high and low levels of cephalosporin C. Biotechnology 4:61–64

    Article  CAS  Google Scholar 

  • Ullán RV, Liu G, Casqueiro J, Gutiérrez S, Bañuelos O, Martín JF (2002a) The cefT gene of Acremonium chrysogenum C10 encodes a putative multidrug efflux pump protein that significantly increases cephalosporin C production. Mol Genet Genomics 267:673–683

    Article  PubMed  Google Scholar 

  • Ullán RV, Casqueiro J, Bañuelos O, Fernández FJ, Gutiérrez S, Martín JF (2002b) A novel epimerization system in fungal secondary metabolism involved in the conversion of isopenicillin N into penicillin N in Acremonium chrysogenum. J Biol Chem 277:46216–46225

    Article  PubMed  Google Scholar 

  • Ullán RV, Casqueiro J, Naranjo L, Vaca I, Martín JF (2004) Expression of cefD2 and the conversion of isopenicillin N into penicillin N by the two-component epimerase system are rate-limiting steps in cephalosporin biosynthesis. Mol Genet Genomics 272:562–570

    Article  PubMed  Google Scholar 

  • Ullán RV, Campoy S, Casqueiro J, Fernández FJ, Martín JF (2007) Deacetylcephalosporin C production in Penicillium chrysogenum by expression of the isopenicillin N epimerization, ring expansion, and acetylation genes. Chem Biol 14:329–339

    Article  PubMed  Google Scholar 

  • Ullán RV, Godio RP, Teijeira F, Vaca, I, García-Estrada C, Feltrer R, Kosalková K, Martín JF (2008) RNA-silencing in Penicillium chrysogenum and Acremonium chrysogenum: validation studies using β-lactam genes expression. J Microbiol Methods (in press)

  • Velasco J, Gutierrez S, Fernandez FJ, Marcos AT, Arenos C, Martin JF (1994) Exogenous methionine increases levels of mRNAs transcribed from pcbAB, pcbC, and cefEF genes, encoding enzymes of the cephalosporin biosynthetic pathway, in Acremonium chrysogenum. J Bacteriol 176:985–991

    PubMed  CAS  Google Scholar 

  • Velasco J, Gutiérrez S, Casqueiro J, Fierro F, Campoy S, Martín JF (2001) Cloning and characterization of the gene cahB encoding a cephalosporin C acetylhydrolase from Acremonium chrysogenum. Appl Microbiol Biotechnol 57:300–356

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants of the European Union (Eurofung QLRT-1999-00729I) and DSM (Delft, Holland). F. Teijeira received a MEC-FPU predoctoral fellowship from the Spanish Government. We thank Barredo JL (Antibioticos S.A.) for providing the pASG418 plasmid and the excellent technical assistance of A. Sánchez, B. Martín, J. Merino, A. Casenave and B. Aguado (Instituto de Biotecnología, INBIOTEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan F. Martín.

Additional information

Communicated by U. Kueck.

Electronic supplementary material

Below is the link to the electronic supplementary material.

294_2008_207_MOESM1_ESM.tif

Figure S.1. (A) Southern blot hybridization of EcoRI-digested genomic DNAs of P. chrysogenum npe6 pyrG -; transformed with pORF7 using as probe a 1400 bp HindIII-XhoI fragment of the cefT gene: lane M, size markers (Lambda DNA / HindIII digested); lane 1, positive control A. chrysogenum C10; lane 2, negative control P. chrysogenum npe6 pyrG -; lane 3, P. chrysogenum npe6-T24 and lane 4, P. chrysogenum npe6-T45 (see description of the bands in Fig. 2). Volumetric (B) and specific IPN production in the culture broths of P. chrysogenum npe6 pyrG -, P. chrysogenum npe6-T24 and P. chrysogenum npe6-T45 strains. All cultures were grown in CP medium for 96 hours. The error bars indicate the standard deviations of three independent cultures. (DOC 357 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ullán, R.V., Teijeira, F. & Martín, J.F. Expression of the Acremonium chrysogenum cefT gene in Penicillum chrysogenum indicates that it encodes an hydrophilic β-lactam transporter. Curr Genet 54, 153–161 (2008). https://doi.org/10.1007/s00294-008-0207-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-008-0207-9

Keywords

Navigation