Skip to main content
Log in

Cytoplasmic Clb2 is required for timely inactivation of the mitotic inhibitor Swe1 and normal bud morphogenesis in Saccharomyces cerevisiae

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Subcellular localization is an important determinant of substrate and functional specificity for cyclin–cyclin dependent kinase (CDK) complexes. This work addresses the cytoplasmic function of the budding yeast mitotic cyclin Clb2, which is mostly nuclear but is also present in the bulk cytoplasm and at the mother-bud neck. Clb2 contains two leucine-rich nuclear export signals (NESs)—one of which we newly describe here—that maintain its presence in the cytoplasm. Yeast strains bearing mutations in one or both of these NESs have elongated buds, indicative of a G2/M cell cycle delay. A small number of these cells exhibit a filamentous-like morphology under conditions that do not normally induce filamentous growth. These phenotypes are enhanced by deletion of the other three mitotic cyclins (CLB1,3,4) and are dependent on expression of Swe1, the yeast Cdk1 inhibitory kinase. Δclb1,3,4 Δbud3 cells, which fail to localize Clb2 to the bud neck, also exhibit a Swe1-dependent elongated bud phenotype. Our results support a model in which cytoplasmic Clb2-Cdk1 is required for timely inactivation of Swe1 at the G2/M transition and bud neck targeting of Clb2 contributes to the efficiency of this process. Cytoplasmic Clb2 may also be important for repression of filamentous growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahn SH, Tobe BT, Fitz Gerald JN, Anderson SL, Acurio A, Kron SJ (2001) Enhanced cell polarity in mutants of the budding yeast cyclin-dependent kinase Cdc28p. Mol Biol Cell 12:3589–3600

    CAS  PubMed  Google Scholar 

  • Archambault V, Chang EJ, Drapkin BJ, Cross FR, Chait BT, Rout MP (2004) Targeted proteomic study of the cyclin–Cdk module. Mol Cell 14:699–711

    Article  CAS  PubMed  Google Scholar 

  • Asano S et al (2005) Concerted mechanism of Swe1/Wee1 regulation by multiple kinases in budding yeast. EMBO J 24:2194–2204

    Article  CAS  PubMed  Google Scholar 

  • Ausubel FM et al (eds) (1998) Current protocols in molecular biology. Wiley, New York

  • Bailly E, Cabantous S, Sondaz D, Bernadac A, Simon MN (2003) Differential cellular localization among mitotic cyclins from Saccharomyces cerevisiae: a new role for the axial budding protein Bud3 in targeting Clb2 to the mother-bud neck. J Cell Sci 116:4119–4130

    Article  CAS  PubMed  Google Scholar 

  • Bogerd HP, Fridell RA, Benson RE, Hua J, Cullen BR (1996) Protein sequence requirements for function of the human T-cell leukemia virus type 1 Rex nuclear export signal delineated by a novel in vivo randomization selection assay. Mol Cell Biol 16:4207–4214

    CAS  PubMed  Google Scholar 

  • Chant J, Herskowitz I (1991) Genetic control of bud site selection in yeast by a set of gene products that constitute a morphogenetic pathway. Cell 65:1203–1212

    Article  CAS  PubMed  Google Scholar 

  • Chant J, Mischke M, Mitchell E, Herskowitz I, Pringle JR (1995) Role of Bud3p in producing the axial budding pattern of yeast. J Cell Biol 129:767–778

    Article  CAS  PubMed  Google Scholar 

  • Cid VJ, Shulewitz MJ, McDonald KL, Thorner J (2001) Dynamic localization of the Swe1 regulator Hsl7 during the Saccharomyces cerevisiae cell cycle. Mol Biol Cell 12:1645–1669

    CAS  PubMed  Google Scholar 

  • Edgington NP, Blacketer MJ, Bierwagen TA, Myers AM (1999) Control of Saccharomyces cerevisiae filamentous growth by cyclin-dependent kinase Cdc28. Mol Cell Biol 19:1369–1380

    CAS  PubMed  Google Scholar 

  • Glotzer M, Murray AW, Kirschner MW (1991) Cyclin is degraded by the ubiquitin pathway. Nature 349:132–138

    Article  CAS  PubMed  Google Scholar 

  • Hadwiger JA, Wittenberg C, Richardson HE, de Barros Lopes M, Reed SI (1989) A family of cyclin homologs that control the G1 phase in yeast. Proc Natl Acad Sci USA 86:6255–6259

    Article  CAS  PubMed  Google Scholar 

  • Harvey SL, Kellogg DR (2003) Conservation of mechanisms controlling entry into mitosis: budding yeast wee1 delays entry into mitosis and is required for cell size control. Curr Biol 13:264–275

    Article  CAS  PubMed  Google Scholar 

  • Harvey SL, Charlet A, Haas W, Gygi SP, Kellogg DR (2005) Cdk1-dependent regulation of the mitotic inhibitor Wee1. Cell 122:407–420

    Article  CAS  PubMed  Google Scholar 

  • Hood JK, Silver PA (1998) Cse1p is required for export of Srp1p/Importin-α from the Nucleus in Saccharomyces cerevisiae. J Biol Chem 273:35142–35146

    Article  CAS  PubMed  Google Scholar 

  • Hood JK, Silver PA (1999) In or out? Regulating nuclear transport. Curr Opin Cell Biol 11:241–247

    Article  CAS  PubMed  Google Scholar 

  • Hood JK, Hwang WW, Silver PA (2001) The Saccharomyces cerevisiae cyclin Clb2p is targeted to multiple subcellular locations by cis- and trans-acting determinants. J Cell Sci 114:589–597

    CAS  PubMed  Google Scholar 

  • Jeffrey PD et al (1995) Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376:313–320

    Article  CAS  PubMed  Google Scholar 

  • Kellogg DR (2003) Wee1-dependent mechanisms required for coordination of cell growth and cell division. J Cell Sci 116:4883–4890

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Snyder M (2000) Genome-wide transposon mutagenesis in yeast. In: Ausubel FM et al. (eds) Current protocols in molecular biology. Wiley, New York, pp 13.13.11–13.13.15

    Google Scholar 

  • La Valle R, Wittenberg C (2001) A role for the Swe1 checkpoint kinase during filamentous growth of Saccharomyces cerevisiae. Genetics 158:549–562

    CAS  PubMed  Google Scholar 

  • Lawrence CW (1991) Classical mutagenesis techniques. Meth Enzymol 194:273–281

    Article  CAS  PubMed  Google Scholar 

  • Lee KS, Asano S, Park JE, Sakchaisri K, Erikson RL (2005) Monitoring the cell cycle by multi-kinase-dependent regulation of Swe1/Wee1 in budding yeast. Cell cycle 4(10):1346–1349

    CAS  PubMed  Google Scholar 

  • Lew DJ (2003) The morphogenesis checkpoint: how yeast cells watch their figures. Curr Opin Cell Biol 15:648–653

    Article  CAS  PubMed  Google Scholar 

  • Lew DJ, Reed SI (1993) Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins. J Cell Biol 120:1305–1320

    Article  CAS  PubMed  Google Scholar 

  • Longtine MS, Theesfeld CL, McMillan JN, Weaver E, Pringle JR, Lew DJ (2000) Septin-dependent assembly of a cell cycle-regulatory module in Saccharomyces cerevisiae. Mol Cell Biol 20:4049–4061

    Article  CAS  PubMed  Google Scholar 

  • McMillan JN et al (1999) The morphogenesis checkpoint in Saccharomyces cerevisiae: cell cycle control of Swe1p degradation by Hsl1p and Hsl7p. Mol Cell Biol 19:6929–6939

    CAS  PubMed  Google Scholar 

  • McMillan JN, Theesfeld CL, Harrison JC, Bardes ES, Lew DJ (2002) Determinants of Swe1p degradation in Saccharomyces cerevisiae. Mol Biol Cell 13:3560–3575

    Article  CAS  PubMed  Google Scholar 

  • Mendenhall MD, Hodge AE (1998) Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62:1191–1243

    CAS  PubMed  Google Scholar 

  • Miller ME, Cross FR (2001) Cyclin specificity: how many wheels do you need on a unicycle? J Cell Sci 114:1811–1820

    CAS  PubMed  Google Scholar 

  • Park JE et al (2004) Novel functional dissection of the localization-specific roles of budding yeast polo kinase Cdc5p. Mol Cell Biol 24:9873–9886

    Article  CAS  PubMed  Google Scholar 

  • Ross-Macdonald P, Sheehan A, Roeder GS, Snyder M (1997) A multipurpose transposon system for analyzing protein production, localization, and function in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94:190–195

    Article  CAS  PubMed  Google Scholar 

  • Ross-Macdonald P et al (1999) Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature 402:413–418

    Article  CAS  PubMed  Google Scholar 

  • Rua D, Tobe BT, Kron SJ (2001) Cell cycle control of yeast filamentous growth. Curr Opin Microbiol 4:720–727

    Article  CAS  PubMed  Google Scholar 

  • Sakchaisri K et al (2004) Coupling morphogenesis to mitotic entry. Proc Natl Acad Sci USA 101:4124–4129

    Article  CAS  PubMed  Google Scholar 

  • Sherman F (1991) Getting started with yeast. In: Guthrie C, Fink GR (eds) Guide to yeast genetics and molecular biology. Academic, Boston, pp 12–15

    Google Scholar 

  • Sia RA, Bardes ES, Lew DJ (1998) Control of Swe1p degradation by the morphogenesis checkpoint. EMBO J 17:6678–6688

    Article  CAS  PubMed  Google Scholar 

  • Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    CAS  PubMed  Google Scholar 

  • Sokal RR, Rohlf J (1981) Nonparametric methods in lieu of single classification anova. In: Biometry, 2nd edn. W.H. Freeman and Company, New York, pp 429–445

    Google Scholar 

  • Wittenberg C, La Valle R (2003) Cell-cycle-regulatory elements and the control of cell differentiation in the budding yeast. Bioessays 25:856–867

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation grant MCB-0416738. C.N.B. and V.L. were supported by summer stipends from the Roberta Dey Staley and Karl A. Staley Fund for Cancer Research at Wellesley College. The authors thank Marie-Nöelle Simon, Anita Corbett, Doug Kellogg, David Pellman, and Fred Cross for providing strains and plasmids. They are also grateful to Caleb DeGrenier, Grace W. Wanjiku and Langdon Smythe for technical assistance and Jeff Hughes for consultation on statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer K. Hood-DeGrenier.

Additional information

Communicated by P. Sunnerhagen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hood-DeGrenier, J.K., Boulton, C.N. & Lyo, V. Cytoplasmic Clb2 is required for timely inactivation of the mitotic inhibitor Swe1 and normal bud morphogenesis in Saccharomyces cerevisiae . Curr Genet 51, 1–18 (2007). https://doi.org/10.1007/s00294-006-0102-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-006-0102-1

Keywords

Navigation