Skip to main content
Log in

Podospora anserina target of rapamycin

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

We have isolated the Podospora anserina TOR gene. The PaTOR protein displayed strong identities with TOR proteins from other eukaryotes especially in the FRB domain and the kinase domain. Genome analysis suggests that a single TOR gene exists in Podospora. The serine residue known to be one site of missense mutations conferring rapamycin resistance in other organisms is conserved in the PaTOR protein (S1895). A PaTOR-S1895R mutated allele has been constructed and introduced in the wild-type strain, as expected strains expressing the PaTOR-S1895R gene become resistant to rapamycin. The dominance of the PaTOR-S1895R allele indicates that apparently the mutation does not impair the kinase activity. We confirm that all cytological modifications associated with rapamycin treatment in Podospora are indeed mediated by PaTOR. We conclude that the PaTOR gene is likely to be essential and that rapamycin treatment might be useful to further investigate rapamycin-sensitive TOR functions in Podospora and especially newly identified rapamycin-sensitive functions such as the autophagy-independent control of vacuole remodeling and septation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alarcon CM, Heitman J (1997) FKBP12 physically and functionally interacts with aspartokinase in Saccharomyces cerevisiae. Mol Cell Biol 17:5968–5975

    PubMed  CAS  Google Scholar 

  • Alarcon CM, Heitman J, Cardenas ME (1999) Protein kinase activity and identification of a toxic effector domain of the target of rapamycin TOR proteins in yeast. Mol Biol Cell 10:2531–2546

    CAS  Google Scholar 

  • Andrade MA, Bork P (1995) HEAT repeats in the Huntington’s disease protein. Nat Genet 11:115–116

    Article  PubMed  CAS  Google Scholar 

  • Barbet NC, Schneider U, Helliwell SB, Stansfield I, Tuite MF, Hall MN (1996) TOR controls translation initiation and early G1 progression in yeast. Mol Biol Cell 7:25–42

    PubMed  CAS  Google Scholar 

  • Bergès T, Barreau C (1989) Heat-shock at elevated temperature improves transformation efficiency of protoplats from Podospora anserina. J Gen Microbiol 135:601–604

    PubMed  Google Scholar 

  • Bosotti R, Isacchi A, Sonnhammer EL (2000) FAT: a novel domain in PIK-related kinases. Trends Biochem Sci 25:225–227

    Article  PubMed  CAS  Google Scholar 

  • Bourges N, Groppi A, Barreau C, Clavé C, Bégueret J (1998) Regulation of gene expression during the vegetative incompatibility reaction in Podospora anserina: characterization of three induced genes. Genetics 150:633–641

    PubMed  CAS  Google Scholar 

  • Brillantes AB, Ondrias K, Scott A, Kobrinsky E, Ondriasova E, Moschella MC, Jayaraman T, Landers M, Ehrlich BE, Marks AR (1994) Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell 77:513–523

    Article  PubMed  CAS  Google Scholar 

  • Cafferkey R et al (1993) Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity. Mol Cell Biol 13:6012–6023

    PubMed  CAS  Google Scholar 

  • Carrol AM, Sweigard JA, Valent-Central B (1994) Improved vectors for selecting resistance to hygromycin. Fungal Genet Newsl 41:22

    Google Scholar 

  • Chen J, Zheng XF, Brown EJ, Schreiber SL (1995) Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. Proc Natl Acad Sci USA 92:4947–4951

    Article  PubMed  CAS  Google Scholar 

  • Chiu MI, Katz H, Berlin V (1994) RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci USA 91:12574–12578

    Article  PubMed  CAS  Google Scholar 

  • Choi J, Chen J, Schreiber SL, Clardy J (1996) Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 273:239–242

    Article  PubMed  CAS  Google Scholar 

  • Cruz MC et al (1999) Rapamycin antifungal action is mediated via conserved complexes with FKBP12 and TOR kinase homologs in Cryptococcus neoformans. Mol Cell Biol 19:4101–4112

    PubMed  CAS  Google Scholar 

  • Deleu C, Clave C, Begueret J (1993) A single amino acid difference is sufficient to elicit vegetative incompatibility in the fungus Podospora anserina. Genetics 135:45–52

    PubMed  CAS  Google Scholar 

  • Dementhon K et al (2003) Rapamycin mimics the incompatibility reaction in the fungus Podospora anserina. Eukaryot Cell 2:238–246

    Article  PubMed  CAS  Google Scholar 

  • Edelman ES, Staben C (1993) A statistical analysis of sequence features within genes from Neurospora crassa. Exp Mycol 18:70–81

    Article  Google Scholar 

  • Fitzgibbon GJ, Morozov IY, Jones MG, Caddick MX (2005) Genetic analysis of the TOR pathway in Aspergillus nidulans. Eukaryot Cell 4:1595–1598

    Article  PubMed  CAS  Google Scholar 

  • Heitman J, Movva NR, Hall MN (1991a) Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253:905–909

    Article  CAS  Google Scholar 

  • Heitman J, Movva NR, Hiestand PC, Hall MN (1991b) FK 506-binding protein proline rotamase is a target for the immunosuppressive agent FK 506 in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 88:1948–1952

    Article  CAS  Google Scholar 

  • Heitman J, Movva NR, Hall MN (1992) Proline isomerases at the crossroads of protein folding, signal transduction, and immunosuppression. New Biol 4:448–460

    PubMed  CAS  Google Scholar 

  • Helliwell SB, Wagner P, Kunz J, Deuter-Reinhard M, Henriquez R, Hall MN (1994) TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol Biol Cell 5:105–118

    PubMed  CAS  Google Scholar 

  • Jacinto E et al (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6:1122–1128

    Article  PubMed  CAS  Google Scholar 

  • Kamada Y, Sekito T, Ohsumi Y (2004) Autophagy in yeast: a TOR-mediated response to nutrient starvation. Curr Top Microbiol Immunol 279:73–84

    PubMed  CAS  Google Scholar 

  • Keith CT, Schreiber SL (1995) PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science 270:50–51

    Article  PubMed  CAS  Google Scholar 

  • Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Movva NR, Hall MN (1993) Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 73:585–596

    Article  PubMed  CAS  Google Scholar 

  • Lecellier G, Silar P (1994) Rapid methods for nucleic acids extraction from Petri dish-grown mycelia. Curr Genet 25:122–123

    Article  PubMed  CAS  Google Scholar 

  • Lorenz MC, Heitman J (1995) TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin. J Biol Chem 270:27531–27537

    Article  PubMed  CAS  Google Scholar 

  • Menand B et al (2002) Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc Natl Acad Sci USA 99:6422–6427

    Article  PubMed  CAS  Google Scholar 

  • Pinan-Lucarré B, Paoletti M, Dementhon K, Coulary-Salin B, Clavé C (2003) Autophagy is induced during cell death by incompatibility and is essential for differentiation in the filamentous fungus Podospora anserina. Mol Microbiol 47:321–333

    Article  PubMed  Google Scholar 

  • Pinan-Lucarré B, Balguerie A, Clavé C (2005) Accelerated cell death in Podospora autophagy mutants. Eukaryot Cell 4:1765–1774

    Article  PubMed  CAS  Google Scholar 

  • Ridder R, Osiewacz HD (1992) Sequence analysis of the gene coding for glyceraldehyde-3-phosphate dehydrogenase (gpd) of Podospora anserina: use of homologous regulatory sequences to improve transformation efficiency. Curr Genet 21:207–213

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual. Cold Spring Harbor, New York

    Google Scholar 

  • Saupe SJ (2000) Molecular genetics of heterokaryon incompatibility in filamentous ascomycetes. Microbiol Mol Biol Rev 64:489–502

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Kunz J, Hall MN (1996) TOR2 is required for organization of the actin cytoskeleton in yeast. Proc Natl Acad Sci USA 93:13780–13785

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Bickle M, Beck T, Hall MN (1997) The yeast phosphatidylinositol kinase homolog TOR2 activates RHO1 and RHO2 via the exchange factor ROM2. Cell 88:531–542

    Article  PubMed  CAS  Google Scholar 

  • Schreiber SL (1991) Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science 251:283–287

    Article  PubMed  CAS  Google Scholar 

  • Sehgal SN (2003) Sirolimus: its discovery, biological properties, and mechanism of action. Transplant Proc 35:7S–14S

    Article  PubMed  CAS  Google Scholar 

  • Vezina C, Kudelski A, Sehgal SN (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle (Tokyo). J Antibiot 28:721–726

    PubMed  CAS  Google Scholar 

  • Weisman R, Choder M (2001) The fission yeast TOR homolog, tor1+, is required for the response to starvation and other stresses via a conserved serine. J Biol Chem 276:7027–7032

    Article  PubMed  CAS  Google Scholar 

  • Weisman R, Choder M, Koltin Y (1997) Rapamycin specifically interferes with the developmental response of fission yeast to starvation. J Bacteriol 179:6325–6334

    PubMed  CAS  Google Scholar 

  • Weisman R, Finkelstein S, Choder M (2001) Rapamycin blocks sexual development in fission yeast through inhibition of the cellular function of an FKBP12 homolog. J Biol Chem 276:24736–24742

    Article  PubMed  CAS  Google Scholar 

  • Weisman R, Roitburg I, Nahari T, Kupiec M (2005) Regulation of leucine uptake by tor1+ in Schizosaccharomyces pombe is sensitive to rapamycin. Genetics 169:539–550

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Stallock JP, Ng JC, Reinhard C, Neufeld TP (2000) Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev 14:2712–2724

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Sven J. Saupe for helpful discussions and for critical reading of the manuscript. This work was supported by the European Commission (Transdeath—Contract #511983). BPL was a recipient of a fellowship from the Ministère de la Recherche and from the Fondation pour la Recherche Médicale (FRM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinne Clavé.

Additional information

Communicated by J. Heitman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinan-Lucarré, B., Iraqui, I. & Clavé, C. Podospora anserina target of rapamycin. Curr Genet 50, 23–31 (2006). https://doi.org/10.1007/s00294-006-0064-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-006-0064-3

Keywords

Navigation