Skip to main content
Log in

Early zygote-specific nuclease in mitochondria of the true slime mold Physarum polycephalum

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The active, selective digestion of mtDNA from one parent is a possible molecular mechanism for the uniparental inheritance of mtDNA. In Physarum polycephalum, mtDNA is packed by DNA-binding protein Glom, which packs mtDNA into rod-shaped mt-nucleoids. After the mating, mtDNA from one parent is selectively digested, and the Glom began to disperse. Dispersed Glom was retained for at least 6 h after mtDNA digestion, but disappeared completely by about 12 h after mixing two strains. We identified two novel nucleases using DNA zymography with native-PAGE and SDS-PAGE. One is a Ca2+-dependent, high-molecular-weight nuclease complex (about 670 kDa), and the other is a Mn2+-dependent, high-molecular-weight nuclease complex (440–670 kDa); the activity of the latter was detected as a Mn2+-dependent, 13-kDa DNase band on SDS-PAGE. All mitochondria isolated from myxamoebae had mt-nucleoids, whereas half of the mitochondria isolated from the zygotes at 12 h after mixing had lost the mt-nucleoids. The activity of the Mn2+-dependent nuclease in the isolated mitochondria was detected at least 8 h after mixing of two strains. The timing and localization of the Mn2+-dependent DNase activity matched the selective digestion of mtDNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Burton WG, Grabowy CT, Sager R (1979) Role of methylation in the modification and restriction of chloroplast DNA in Chlamydomonas. Proc Natl Acad Sci USA 76:1390–1394

    Article  PubMed  CAS  Google Scholar 

  • Birky CW Jr (1995) Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc Natl Acad Sci USA 92:11331–11338

    Article  PubMed  CAS  Google Scholar 

  • Bischoff KM, Shi L, Kennelly PJ (1998) The detection of enzyme activity following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Anal Biochem 260:1–17

    Article  PubMed  CAS  Google Scholar 

  • Chow TY, Fraser MJ (1983) Purification and properties of single strand DNA-binding endo-exonuclease of Neurospora crassa. J Biol Chem 258:12010–12018

    PubMed  CAS  Google Scholar 

  • Davies AM, Hershman S, Stabley GL, Hoek JB, Peterson J, Cahill A (2003) A Ca2+-induced mitochondrial permeability transition causes complete release of rat liver endonuclease G activity from its exclusive location within the mitochondrial intermembrane space Identification of a novel endo-exonuclease activity residing within the mitochondrial matrix. Nucleic Acids Res 31:1364–1373

    Article  PubMed  CAS  Google Scholar 

  • Engel ML, Ray DS (1998) A structure-specific DNA endonuclease is enriched in kinetoplasts purified from Crithidia fasciculate. Nucleic Acids Res 26:4733–4738

    Article  PubMed  CAS  Google Scholar 

  • Fikus MU, Mieczkowski PA, Koprowski P, Rytka J, Sledziewska-Gojska E, Ciesla Z (2000) The product of the DNA damage-inducible gene of Saccharomyces cerevisiae, DIN7, specifically functions in mitochondria. Genetics 154:73–81

    PubMed  CAS  Google Scholar 

  • Ikeda S, Kohmoto T, Tabata R, Seki Y (2002) Differential intracellular localization of the human and mouse endonuclease III homologs and analysis of the sorting signals. DNA Repair 1:847–854

    Article  PubMed  CAS  Google Scholar 

  • Kuroiwa T, Kuroiwa H (1980) Inhibition of Physarum mitochondrial division by cytochalasin B. Experientia 36:193–194

    Article  PubMed  CAS  Google Scholar 

  • Kuroiwa T (1982) Mitochondrial nuclei. Int Rev Cytol 75:1–59

    Article  PubMed  CAS  Google Scholar 

  • Kuroiwa T, Kawano S, Nishibayashi S, Sato C (1982) Epifluorescent microscopic evidence for maternal inheritance of chloroplast DNA. Nature 298:481–483

    Article  PubMed  CAS  Google Scholar 

  • Kuzminov A (1999) Recombinational repair of DNA damage in Escherichia coli and bacteriophage. Microbiol Mol Biol Rev 63:751–813

    PubMed  CAS  Google Scholar 

  • Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P, Tollervey D (2000) mRNA stability in eukaryotes. Curr Opin Genet Dev 10:193–198

    Article  PubMed  CAS  Google Scholar 

  • Moriyama Y, Kawano S (2003) Rapid, selective digestion of mitochondrial DNA in accordance with the matA hierarchy of multiallelic mating types in the mitochondrial inheritance of Physarum polycephalum. Genetics 164:963–975

    PubMed  CAS  Google Scholar 

  • Nishimura Y, Misumi O, Kato K, Inada N, Higashiyama T, Momoyama Y, Kuroiwa T (2002) An mt(+) gamete-specific nuclease that targets mt(−) chloroplasts during sexual reproduction in C reinhardtii. Genes Dev 16:1116–1128

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama R, Wada Y, Mibu M, Yamaguchi Y, Shimogawara K, Sano H (2004) Role of a nonselective de novo DNA methyltransferase in maternal inheritance of chloroplast genes in the green alga, Chlamydomonas reinhardtii. Genetics 168:809–816

    Article  PubMed  CAS  Google Scholar 

  • Sakurai R, Sasaki N, Takano H, Abe T, Kawano S (2000) In vivo conformation of mitochondrial DNA revealed by pulsed-field gel electrophoresis in the true slime mold, Physarum polycephalum. DNA Res 7:83–91

    PubMed  CAS  Google Scholar 

  • Sasaki N, Kuroiwa H, Nishitani C, Takano H, Higashiyama T, Kobayashi T, Shirai Y, Sakai A, Kawano S, Murakami-Murofushi K, Kuroiwa T (2003) Glom is a novel mitochondrial DNA packaging protein in Physarum polycephalum and causes intense chromatin condensation without suppressing DNA functions. Mol Biol Cell 12:4758–4769

    Article  CAS  Google Scholar 

  • Stierum RH, Croteau DL, Bohr VA (1999) Purification and characterization of a mitochondrial thymine glycol endonuclease from rat liver. J Biol Chem 274:7128–7136

    Article  PubMed  CAS  Google Scholar 

  • Sutovsky P, Moreno RD, Romalho-Santos J, Dominko T, Simerly C, Schatten G (1999) Ubiquitin tag for sperm mitochondria. Nature 402:371–372

    Article  PubMed  CAS  Google Scholar 

  • Sutovsky P, Moreno RD, Romalho-Santos J, Dominko T, Simerly C, Schatten G (2000) Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos. Biol Reprod 63:582–590

    Article  PubMed  CAS  Google Scholar 

  • Takano H, Abe T, Sakurai R, Moriyama Y, Miyazawa Y, Nozaki H, Kawano S, Sasaki N, Kuroiwa T (2001) The complete DNA sequence of the mitochondrial genome of Physarum polycephalum. Mol Gen Genet 264:539–545

    Article  PubMed  CAS  Google Scholar 

  • Tsuchimoto D, Sakai Y, Sakumi K, Nishioka K, Sasaki M, Fujiwara T, Nakabeppu Y (2001) Human APE2 protein is mostly localized in the nuclei and to some extent in the mitochondria, while nuclear APE2 is partly associated with proliferating cell nuclear antigen. Nucleic Acids Res 29:2349–2360

    Article  PubMed  CAS  Google Scholar 

  • Umen JG, Goodenough UW (2001) Chloroplast DNA methylation and inheritance in Chlamydomonas. Genes Dev 15:2585–2597

    Article  PubMed  CAS  Google Scholar 

  • van Hoof A, Parker R (1999) The exosome: a proteasome for RNA? Cell 99:347–350

    Article  PubMed  Google Scholar 

  • Zassenhaus HP, Hofmann TJ, Uthayashanker R, Vincent RD, Zona M (1988) Construction of a yeast mutant lacking the mitochondrial nuclease. Nucleic Acids Res 16:3283–3296

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. T. Kuroiwa (Graduate School of Science, University of Tokyo) for helpful discussions. We also thank S. Matsunaga (Graduate School of Engineering, University of Osaka) for helpful technical advice. This study was supported by a grant for Scientific Research in Priority Areas (no. 15440246 to S. K.) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeyuki Kawano.

Additional information

Communicated by L. Tomaska

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moriyama, Y., Yamazaki, T., Nomura, H. et al. Early zygote-specific nuclease in mitochondria of the true slime mold Physarum polycephalum . Curr Genet 48, 334–343 (2005). https://doi.org/10.1007/s00294-005-0025-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-005-0025-2

Key words

Navigation